scholarly journals Axisymmetric Wave Propagation Behavior in Fluid-Conveying Carbon Nanotubes Based on Nonlocal Fluid Dynamics and Nonlocal Strain Gradient Theory

2020 ◽  
Vol 8 (5) ◽  
pp. 773-780
Author(s):  
Yang Yang ◽  
Qihui Lin ◽  
Rongxin Guo

Abstract Purpose Goal for the present research is investigating the axisymmetric wave propagation behaviors of fluid-filled carbon nanotubes (CNTs) with low slenderness ratios when the nanoscale effects contributed by CNT and fluid flow are considered together. Method An elastic shell model for fluid-conveying CNTs is established based on theory of nonlocal elasticity and nonlocal fluid dynamics. The effects of stress non-locality and strain gradient at nanoscale are simulated by applying nonlocal stress and strain gradient theories to CNTs and nonlocal fluid dynamics to fluid flow inside the CNTs, respectively. The equilibrium equations of axisymmetric wave motion in fluid-conveying CNTs are derived. By solving the governing equations, the relationships between wave frequency and all small-scale parameters, as well as the effects caused by fluid flow on different wave modes, are analyzed. Results The numerical simulation indicates that nonlocal stress effects damp first-mode waves but promote propagation of second-mode waves. The strain gradient effect promotes propagation of first-mode waves but has no influence on second-mode waves. The nonlocal fluid effect only causes damping of second-mode waves and has no influence on first-mode waves. Damping caused by nonlocal effects are most affect on waves with short wavelength, and the effect induced by strain gradient almost promotes the propagation of wave with all wavelengths.

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882332
Author(s):  
Yang Yang ◽  
Wuhuai Yan ◽  
Jinrui Wang

In this article, Timoshenko’s beam model is established to investigate the wave propagation behaviors for a fluid-conveying carbon nanotube when employing the nonlocal stress–strain gradient coupled theory and nonlocal fluid theory. The governing equations of motion for the carbon nanotube are derived. The small-scale influences induced by the nanotube are simulated by nonlocal and strain gradient effects, and the scale effect induced by fluid flow is first investigated applying nonlocal fluid theory. Numerical results obtained by solving the governing equations indicate that the nonlocal effect induced by the nanotube leads to wave damping and a decrease in stiffness, while the strain gradient effect contributes to wave promotion and an enhancement in stiffness. The scale effect caused by the inner fluid only leads to a decay for a high-mode wave since there is no influence from fluid flow on the low-mode wave. The numerical solution is validated by comparing with Monte Carlo simulation and interval analysis method.


Author(s):  
Amir-Reza Asghari Ardalani ◽  
Ahad Amiri ◽  
Roohollah Talebitooti ◽  
Mir Saeed Safizadeh

Wave dispersion response of a fluid-carrying piezoelectric nanotube is studied in this paper utilizing an improved model for piezoelectric materials which capture a new effect known as flexoelectricity in conjunction with the surface elasticity. For this aim, a higher order shear deformation theory is employed to model the problem. Furthermore, strain gradient effect as well as nonlocal effect is taken into consideration throughout using the nonlocal strain gradient theory (NSGT). Surface elasticity is also considered to make an accurate size-dependent formulation. Additionally, a non-compressible and non-viscous fluid is taken into consideration to model the flow effect. The wave propagation solution is then implemented to the governing equations obtained by Hamiltonian’s approach. The phase velocity and group velocity of the nanotube is determined for three wave modes (i.e. shear, longitudinal and bending waves) to study the influence of various involved factors including strain gradient, nonlocality, flexoelectricity and surface elasticity and flow velocity on the wave dispersion curves. Results reveal a considerable effect of the flexoelectric phenomenon on the wave propagation properties especially at a specific domain of the wave number. The size-dependency of this effect is disclosed. Overall, it is found that the flexoelectricity exhibits a substantial influence on wave dispersion properties of the smart fluid-conveying systems. Hence, such size-dependent effect should be considered to achieve exact and accurate knowledge on wave propagation characteristics of the system.


2018 ◽  
Vol 35 (4) ◽  
pp. 441-454 ◽  
Author(s):  
M. Shishesaz ◽  
M. Hosseini

ABSTRACTIn this paper, the mechanical behavior of a functionally graded nano-cylinder under a radial pressure is investigated. Strain gradient theory is used to include the small scale effects in this analysis. The variations in material properties along the thickness direction are included based on three different models. Due to slight variations in engineering materials, the Poisson’s ratio is assumed to be constant. The governing equation and its corresponding boundary conditions are obtained using Hamilton’s principle. Due to the complexity of the governed system of differential equations, numerical methods are employed to achieve a solution. The analysis is general and can be reduced to classical elasticity if the material length scale parameters are taken to be zero. The effect of material indexn, variations in material properties and the applied internal and external pressures on the total and high-order stresses, are well examined. For the cases in which the applied external pressure at the inside (or outside) radius is zero, due to small effects in nano-cylinder, some components of the high-order radial stresses do not vanish at the boundaries. Based on the results, the material inhomogeneity indexn, as well as the selected model through which the mechanical properties may vary along the thickness, have significant effects on the radial and circumferential stresses.


Sign in / Sign up

Export Citation Format

Share Document