Vibration Analysis of Rotating Functionally Graded Piezoelectric Nanobeams Based on the Nonlocal Elasticity Theory

Author(s):  
Li Hao-nan ◽  
Li Cheng ◽  
Shen Ji-ping ◽  
Yao Lin-quan
2017 ◽  
Vol 24 (17) ◽  
pp. 3809-3818 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati ◽  
Parisa Haghi

The present research deals with the wave dispersion behavior of a rotating functionally graded material (FGMs) nanobeam applying nonlocal elasticity theory of Eringen. Material properties of rotating FG nanobeam are spatially graded according to a power-law model. The governing equations as functions of axial force due to centrifugal stiffening and displacements are obtained by employing Hamilton’s principle based on the Euler–Bernoulli beam theory. By using an analytical model, the dispersion relations of the FG nanobeam are derived by solving an eigenvalue problem. Numerical results clearly show that various parameters, such as angular velocity, gradient index, wave number and nonlocal parameter, are significantly effective to characteristics of wave propagations of rotating FG nanobeams. The results can be useful for next generation study and design of nanomachines, such as nanoturbines, nanoscale molecular bearings and nanogears, etc.


Sign in / Sign up

Export Citation Format

Share Document