Modified nonlocal elasticity theory for functionally graded materials

2015 ◽  
Vol 90 ◽  
pp. 44-57 ◽  
Author(s):  
H. Salehipour ◽  
A.R. Shahidi ◽  
H. Nahvi
2017 ◽  
Vol 24 (17) ◽  
pp. 3809-3818 ◽  
Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati ◽  
Parisa Haghi

The present research deals with the wave dispersion behavior of a rotating functionally graded material (FGMs) nanobeam applying nonlocal elasticity theory of Eringen. Material properties of rotating FG nanobeam are spatially graded according to a power-law model. The governing equations as functions of axial force due to centrifugal stiffening and displacements are obtained by employing Hamilton’s principle based on the Euler–Bernoulli beam theory. By using an analytical model, the dispersion relations of the FG nanobeam are derived by solving an eigenvalue problem. Numerical results clearly show that various parameters, such as angular velocity, gradient index, wave number and nonlocal parameter, are significantly effective to characteristics of wave propagations of rotating FG nanobeams. The results can be useful for next generation study and design of nanomachines, such as nanoturbines, nanoscale molecular bearings and nanogears, etc.


Author(s):  
Jianshi Fang ◽  
Bo Yin ◽  
Xiaopeng Zhang ◽  
Bin Yang

The free vibration of rotating functionally graded nanobeams under different boundary conditions is studied based on nonlocal elasticity theory within the framework of Euler-Bernoulli and Timoshenko beam theories. The thickness-wise material gradient variation of the nanobeam is considered. By introducing a second-order axial shortening term into the displacement field, the governing equations of motion of the present new nonlocal model of rotating nanobeams are derived by the Hamilton’s principle. The nonlocal differential equations are solved through the Galerkin method. The present nonlocal models are validated through the convergence and comparison studies. Numerical results are presented to investigate the influences of the nonlocal parameter, angular velocity, material gradient variation together with slenderness ratio on the vibration of rotating FG nanobeams with different boundary conditions. Totally different from stationary nanobeams, the rotating nanobeams with relatively high angular velocity could produce larger fundamental frequencies than local counterparts. Additionally, the axial stretching-transverse bending coupled vibration is perfectly shown through the frequency loci veering and modal conversion.


Sign in / Sign up

Export Citation Format

Share Document