fg nanobeam
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 33 ◽  
pp. 105-132
Author(s):  
Fateme Shayestenia ◽  
Mohadese Janmohammadi ◽  
Seyedabbas Sadatsakkak ◽  
Majid Ghadiri

Analysis of vibration stability of simply supported Euler-Bernoulli functionally graded (FG) nanobeam embedded in viscous elastic medium with thermal effect under external parametric excitation is presented in this work. An attempt has been made for the first time is investigating the effect of thermal load on dynamic behavior, amplitude response, instability region and bifurcation points of functionally graded nanobeam. Thermal loads are supposed to be uniform, linear or nonlinear distribution along the thickness direction. Nonlocal continuum theory and the principle of the minimum total potential energy are applied to derive the governing equations. The partial differential equations (PDE) are transported to the ordinary differential equations (ODE) by using the Petrov-Galerkin method and the multiple time scales method are manipulated to solve the motion equation. To study the effect of external parametric excitation and thermal effect, different temperature distributions along the thickness such as uniform, linear, and nonlinear distribution are considered. Moreover, stable and unstable regions and bifurcation points are determined. It is obtained that the thermal load can affect the amplitude response of FG nanobeam. Also, it is observed that the instability of the system is affected by the detuning parameter and the parametric excitation amplitude plays great role in the instability of system. Nanobeams are used in many devices like nanoresonators, nanosensors and nanoswitches. This paper is helpful for designing and manufacturing nanoscale structures specially nanoresonators under different thermal loads.


2020 ◽  
Vol 86 ◽  
pp. 349-367
Author(s):  
Ilgar Jafarsadeghi-Pournaki ◽  
Saber Azizi ◽  
Mohammadreza Zamanzadeh ◽  
Hadi Madinei ◽  
Rasoul Shabani ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Busra Uzun ◽  
Mustafa Özgur Yaylı ◽  
Babur Deliktaş

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Seyyed Amirhosein Hosseini1 ◽  
O. Rahmani2

The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam.  The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Seyyed Amirhosein Hosseini ◽  
Omid Rahmani

The bending and vibration behavior of a curved FG nanobeam using the nonlocal Timoshenko beam theory is analyzed in this paper. It is assumed that the material properties vary through the radius direction.  The governing equations were obtained using Hamilton principle based on the nonlocal Timoshenko model of curved beam. An analytical approach for a simply supported boundary condition is conducted to analyze the vibration and bending of curved FG nanobeam. In the both mentioned analysis, the effect of significant parameter such as opening angle, the power law index of FGM, nonlocal parameter, aspect ratio and mode number are studied. The accuracy of the solution is examined by comparing the results obtained with the analytical and numerical results published in the literatures.


Author(s):  
Seyyed Amirhosein Hosseini ◽  
Omid Rahmani

The bending and vibration behavior of a curved FG nanobeam using the nonlocal Timoshenko beam theory is analyzed in this paper. It is assumed that the material properties vary through the radius direction.  The governing equations were obtained using Hamilton principle based on the nonlocal Timoshenko model of curved beam. An analytical approach for a simply supported boundary condition is conducted to analyze the vibration and bending of curved FG nanobeam. In the both mentioned analysis, the effect of significant parameter such as opening angle, the power law index of FGM, nonlocal parameter, aspect ratio and mode number are studied. The accuracy of the solution is examined by comparing the results obtained with the analytical and numerical results published in the literatures.


Sign in / Sign up

Export Citation Format

Share Document