scholarly journals Monitoring atmospheric water vapour variability over Nigeria from ERA-Interim and NCEP reanalysis data

2019 ◽  
Vol 1 (10) ◽  
Author(s):  
Lazarus Mustapha Ojigi ◽  
Yusuf Drisu Opaluwa
2012 ◽  
Vol 12 (11) ◽  
pp. 30119-30176 ◽  
Author(s):  
H. F. Goessling ◽  
C. H. Reick

Abstract. Atmospheric water vapour tracers (WVTs) are an elegant tool to determine source-sink relations of moisture "online" in atmospheric general circulation models (AGCMs). However, it is sometimes desireable to establish such relations "offline" based on already existing atmospheric data (e.g. reanalysis data). One simple and frequently applied offline method is 2-D moisture tracing. It makes use of the "well-mixed" assumption, which allows to treat the vertical dimension integratively. Here we scrutinise the "well-mixed" assumption and 2-D moisture tracing by means of analytical considerations in combination with AGCM-WVT simulations. We find that vertically well-mixed conditions are seldomly met. Due to the presence of vertical inhomogeneities, 2-D moisture tracing (I) neglects a significant degree of fast-recycling, and (II) results in erroneous advection where the direction of the horizontal winds varies vertically. The latter is not so much the case in the extratropics, but in the tropics this can lead to large errors. For example, computed by 2-D moisture tracing, the fraction of precipitation in the Western Sahel that originates from beyond the Sahara is ~40%, whereas the fraction that originates from the tropical and Southern Atlantic is only ~4%. Full (i.e. 3-D) moisture tracing however shows that both regions contribute roughly equally, which reveals the results of an earlier study as spurious. Moreover, we point out that there are subtle degrees of freedom associated with the implementation of WVTs into AGCMs because the strength of mixing between precipitation and the ambient water vapour is not completely provided by such models. We compute an upper bound for the resulting uncertainty and show that this uncertainty is smaller than the errors associated with 2-D moisture tracing.


Waterlines ◽  
1993 ◽  
Vol 12 (2) ◽  
pp. 20-22 ◽  
Author(s):  
Roland Wahlgren

Tellus B ◽  
1984 ◽  
Vol 36 (3) ◽  
pp. 149-162 ◽  
Author(s):  
G. Mark Doherty ◽  
Reginald E. Newell

2013 ◽  
Vol 6 (1) ◽  
pp. 131-149 ◽  
Author(s):  
T. Wagner ◽  
M. O. Andreae ◽  
S. Beirle ◽  
S. Dörner ◽  
K. Mies ◽  
...  

Abstract. We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so-called geometric approximation and does not depend on explicit a priori information for individual observations, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011, and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET) and European Centre for Medium-Range Weather Forecasting (ECMWF) H2O vertical column densities (VCDs) is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in situ observations, and it was possible to derive average daily H2O scale heights (between 1.5 km and 3 km). MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness).


Sign in / Sign up

Export Citation Format

Share Document