Spatial and temporal characteristics of atmospheric water vapour content and its relationship with precipitation conversion in China during 1980–2016

Author(s):  
Olusola O. Ayantobo ◽  
Jiahua Wei ◽  
Beiming Kang ◽  
Tiejian Li ◽  
Guangqian Wang
2009 ◽  
Vol 5 (H15) ◽  
pp. 537-537
Author(s):  
R. Querel ◽  
F. Kerber ◽  
R. Hanuschik ◽  
G. Lo Curto ◽  
D. Naylor ◽  
...  

Water vapour is the principle source of opacity at infrared wavelengths in the earth's atmosphere. Measurements of atmospheric water vapour serve two primary purposes when considering operation of an observatory: long-term monitoring of precipital water vapour (PWV) is useful for characterizing potential observatory sites, and real-time monitoring of PWV is useful for optimizing use, in particular for mid-IR observations.


MAUSAM ◽  
2022 ◽  
Vol 44 (3) ◽  
pp. 243-248
Author(s):  
K. NIRANJAN ◽  
Y. RAMESH BABU

Integrated atmospheric water vapour content. has been evaluated from the spectral optical depths around the PaT band of water vapour by making directly transmitted solar flux measurements at 800, 935 and 1025 nm. The temporal variation of the total precipitable water vapour shows significant seasonal variation with maximum during~ pre-monsoon and monsoon months and minimum during winter months. The integrated content shows a positive correlation with surface humidity parameters and the correlation is better during monsoon months compared to other seasons. The experimentally derived variations of water vapour are compared with the model variations formulated using radiosonde data. The aerosol extinctions derived from the, multi-spectral solar flux measurements in the visible and near IR regions increase with increasing atmospheric water vapour and this increase shows .a seasonal dependence the surface temperature also seems to affect the, aerosol extinction probably through Its effect on the mixing heights.


2017 ◽  
Vol 35 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Joshua M. Chadney ◽  
Daniel K. Whiter ◽  
Betty S. Lanchester

Abstract. We model absorption by atmospheric water vapour of hydroxyl airglow emission using the HIgh-resolution TRANsmission molecular absorption database (HITRAN2012). Transmission coefficients are provided as a function of water vapour column density for the strongest OH Meinel emission lines in the (8–3), (5–1), (9–4), (8–4), and (6–2) vibrational bands. These coefficients are used to determine precise OH(8–3) rotational temperatures from spectra measured by the High Throughput Imaging Echelle Spectrograph (HiTIES), installed at the Kjell Henriksen Observatory (KHO), Svalbard. The method described in this paper also allows us to estimate atmospheric water vapour content using the HiTIES instrument.


1996 ◽  
Vol 13 (2) ◽  
pp. 189-189
Author(s):  
Michael Burton

The thermal emission from a cold, dense molecular cloud peaks in the far IR, and the spectrum is rich in molecular lines in the submillimetre and millimetre bands. Observation of these bands is hindered, however, by atmospheric water vapour, which absorbs the incoming radiation. Ground-based mm observations from Australia, where the atmospheric water vapour content typically contains ~10 mm precipitable (ppt) H2O, can only probe a few of the molecular transitions from the heavier molecules, such as CO, CS, HCO+ and HCN. Sub-mm observations would enable the higher rotational lines from many of these molecules to be studied, and open up other spectral features to scrutiny, such as the lines from hydrides (e.g. CaH, NH, SH) and neutral carbon at 370 and 610 μm. However, they cannot be made from Australia. While sites such as Mauna Kea, which has ~1 mm ppt H2O on the best days, open the sub-mm band to partial viewing, their utility is limited in comparison to the opportunities possible from the Antarctic Plateau. Here the column of H2O drops to 100–250 μm.


Sign in / Sign up

Export Citation Format

Share Document