scholarly journals Defects and uncertainties of adhesively bonded composite joints

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.

2018 ◽  
Vol 52 (21) ◽  
pp. 2875-2885 ◽  
Author(s):  
S Sassi ◽  
M Tarfaoui ◽  
H Benyahia

The effect of the strain rate on the mechanical behavior and the damage of adhesively bonded joints is one of the most important factors to consider in designing them. Vast research has been carried out on the dynamic behaviour of adhesives at different strain rates; however, the investigation about the dynamic behaviour of the adhesively bonded joints is limited. In this paper, the main objective is to study and assess the effect of the strain rate on the out-of-plane mechanical behaviour of adhesively bonded joints under dynamic compression using Hopkinson bars. These joints are studied using glass/vinylester composite materials which are commonly used in naval applications. The experimantal results have shown a strong material sensitivity to strain rates. Moreover, damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown good agreement with the dependency of the dynamic parameters on strain rates.


Author(s):  
Mehdi Asgharifar ◽  
Fanrong Kong ◽  
Blair Carlson ◽  
Radovan Kovacevic

This study investigates the potentiality of using atmospheric-pressure Direct Current (DC) plasma arc discharge as a surface treatment method of aluminum alloys in adhesively bonded joints in order to enhance adhesion. The surface morphology exposed to the arc for the current of 40 A (low intensity) and the plasma torch scanning speeds between 20 and 120 mm/s, exhibits a micro-scale surface roughness appropriate for adhesive bonding. The arc textured surfaces are characterized by using an optical profilometer. Additionally, the effect of modified surface on the stress distribution throughout the single-lap adhesively bonded joint in tension is explored by 2D FEM. The geometrical model for FE analysis of adhesively bonded structure is generated by including the surface texture coordinates obtained from the optical profilometer.


2011 ◽  
Vol 70 ◽  
pp. 369-374 ◽  
Author(s):  
R.C. Waugh ◽  
Janice M. Dulieu-Barton ◽  
S. Quinn

The feasibility of using pulse phase thermography (PPT) to identify defects in adhesively bonded joints is assessed. Artificial defects created in solid materials are successfully identified using the phase images produced by PPT. Contaminants typical of those found in the manufacturing environment have been used to recreate kissing defects in joints in polymer composite materials constructed using a single shot process and by using secondary bonding. It is shown that PPT has the potential to identify kissing defects.


2012 ◽  
Vol 33 ◽  
pp. 242-247 ◽  
Author(s):  
H.S. da Costa Mattos ◽  
A.H. Monteiro ◽  
R. Palazzetti

Sign in / Sign up

Export Citation Format

Share Document