A High-Precision Road Network Construction Method Based on Deep Learning for Unmanned Vehicle in Open Pit

Author(s):  
Qinghua Gu ◽  
Buqing Xue ◽  
Jiangshan Song ◽  
Xuexian Li ◽  
Qian Wang
2017 ◽  
Vol 6 (12) ◽  
pp. 400 ◽  
Author(s):  
Yongchuan Zhang ◽  
Jiping Liu ◽  
Xinlin Qian ◽  
Agen Qiu ◽  
Fuhao Zhang

Author(s):  
Fei Yang ◽  
Chengrong Ma ◽  
Bowen Zhang ◽  
Xuannan Chen ◽  
Li Cao ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1500
Author(s):  
Sara Cornejo-Bueno ◽  
Mihaela I. Chidean ◽  
Antonio J. Caamaño ◽  
Luis Prieto-Godino ◽  
Sancho Salcedo-Sanz

This paper presents a novel methodology for Climate Network (CN) construction based on the Kullback-Leibler divergence (KLD) among Membership Probability (MP) distributions, obtained from the Second Order Data-Coupled Clustering (SODCC) algorithm. The proposed method is able to obtain CNs with emergent behaviour adapted to the variables being analyzed, and with a low number of spurious or missing links. We evaluate the proposed method in a problem of CN construction to assess differences in wind speed prediction at different wind farms in Spain. The considered problem presents strong local and mesoscale relationships, but low synoptic scale relationships, which have a direct influence in the CN obtained. We carry out a comparison of the proposed approach with a classical correlation-based CN construction method. We show that the proposed approach based on the SODCC algorithm and the KLD constructs CNs with an emergent behaviour according to underlying wind speed prediction data physics, unlike the correlation-based method that produces spurious and missing links. Furthermore, it is shown that the climate network construction method facilitates the evaluation of symmetry properties in the resulting complex networks.


Author(s):  
Mohanad F Jwaid, Husam K Salih Juboori

In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancements coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. In addition to four other models we are proposing a decomposition-based restricted genetic dominance (DBCDP-NSGA-II) algorithm, which retains viable and non-facilitating solutions in small areas in order to improve the convergence, distribution and diversity of traditional high-dimensional multi-objective fast-dominated genetic sorting Algorithms (NSGA-II).


2021 ◽  
Author(s):  
ming ji ◽  
Chuanxia Sun ◽  
Yinglei Hu

Abstract In order to solve the increasingly serious traffic congestion problem, an intelligent transportation system is widely used in dynamic traffic management, which effectively alleviates traffic congestion and improves road traffic efficiency. With the continuous development of traffic data acquisition technology, it is possible to obtain real-time traffic data in the road network in time. A large amount of traffic information provides a data guarantee for the analysis and prediction of road network traffic state. Based on the deep learning framework, this paper studies the vehicle recognition algorithm and road environment discrimination algorithm, which greatly improves the accuracy of highway vehicle recognition. Collect highway video surveillance images in different environments, establish a complete original database, build a deep learning model of environment discrimination, and train the classification model to realize real-time environment recognition of highway, as the basic condition of vehicle recognition and traffic event discrimination, and provide basic information for vehicle detection model selection. To improve the accuracy of road vehicle detection, the vehicle target labeling and sample preprocessing of different environment samples are carried out. On this basis, the vehicle recognition algorithm is studied, and the vehicle detection algorithm based on weather environment recognition and fast RCNN model is proposed. Then, the performance of the vehicle detection algorithm described in this paper is verified by comparing the detection accuracy differences between different environment dataset models and overall dataset models, different network structures and deep learning methods, and other methods.


Sign in / Sign up

Export Citation Format

Share Document