Funneliformis mosseae Application Improves the Oil Quantity and Quality and Eco-physiological Characteristics of Soybean (Glycine max L.) Under Water Stress Conditions

Author(s):  
Mostafa Amani Machiani ◽  
Abdollah Javanmard ◽  
Mohammad Reza Morshedloo ◽  
Mohsen Janmohammadi ◽  
Filippo Maggi
1970 ◽  
Vol 4 (1) ◽  
Author(s):  
EDI PURWANTO

These sets of experiments were conducted at Faculty of Agriculture Sebelas Maret University and the Central Experiment Station of Agricultural Faculty, Sebelas Maret University at Jumantono, Karanganyar, Central Java. The experiments were conducted under greenhouse, laboratory and field condition for each year, while the duration of this research was for two years. The specific objectives of the experiments were: (i) to determine the changes of some morpho-physiological characteristics of water stress soybean and those of unstressed plants at different growth stages; (ii) to evaluate relationship between morpho-physiological traits associated with water stress resistance and yield of soybean. In this study consists some experiments, there are: (i) about response of some soybean cultivars to water stress in screen house and field condition; (ii) about germination response of some soybean cultivars in different concentration 0f PEG; (iii) a bout recovery survival and recovery of soybean seedlings after heat treatment. The plants were well watered before thetreatment. Based on the result of the experiments, the following conclusion could be made: (i) water stress reduced growth, yield and yield components 0 f a II soybean c ultivars used; (li) PEG induced water stress resulted in lower germination, shorter root and shoot length, and increase root-shoot ratio; (iii) the ability of plants to recovery after heat stress have low correlation with drought resistance in this experiment; (iv) the determination of root-shoot ratio in the seedling stage was shown to be suitable screening techniques used to study water stress resistance.© 200'3Jurusan Biologi FMIPA UNS SurakartaKey words: soybean (Glycine max L.), cultivars, water stress.


Author(s):  
Nurul Aini ◽  
Syekhfani Syekhfani ◽  
Wiwin Sumiya Dwi Yamika ◽  
Runik Dyah P. ◽  
Adi Setiawan

1992 ◽  
Vol 72 (2) ◽  
pp. 383-390 ◽  
Author(s):  
A. Djekoun ◽  
C. Planchon

Yield limitation in soybean (Glycine max L. Merr.) can result from decreases in photosynthesis and N2 fixation during periods of water deficiency. In this study, the relationships among stomatal conductance, photosynthesis and N2 fixation were analyzed in connection with drought tolerance of genotypes. Plants were grown in pots and exposed to field conditions. Carbon dioxide exchange rate was measured by gas analysis and nodule activity by the acetylene reduction method. Leaf water status was determined with a pressure bomb, and nodule water potential and leaf osmotic potential were measured psychrometrically. The differing tolerances of the cultivars Kingsoy and Hodgson to leaf water deficit resulted in a more or less developed ability of the lower side of the leaf to maintain good stomatal conductance during water stress. Stomatal conductance affects photosynthetic rate directly and acetylene reduction activity indirectly. Early stomatal closure, by limiting H2O exchange, contributes to conservation of nitrogenase activity. On the contrary, maintenance of high conductance during a water stress decreases soil water availability and nodule water content, which in turn has a decisive and limiting effect on acetylene reduction activity. Thus, if tolerance at low leaf water potentials associated with osmotic adjustment is an important drought mechanism for maintaining photosynthetic processes under water-limited conditions, the result would be obtained at the expense of symbiotic N2 fixation.Key words: Glycine max L. Merr., nitrogenase activity, photosynthesis, drought stress, soybean


Sign in / Sign up

Export Citation Format

Share Document