carbon partitioning
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 73)

H-INDEX

58
(FIVE YEARS 6)

2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Isaac A. Salmeron-Santiago ◽  
Miguel Martínez-Trujillo ◽  
Juan J. Valdez-Alarcón ◽  
Martha E. Pedraza-Santos ◽  
Gustavo Santoyo ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that supply mineral nutrients to the host plant in exchange for carbon derived from photosynthesis. Sucrose is the end-product of photosynthesis and the main compound used by plants to translocate photosynthates to non-photosynthetic tissues. AMF alter carbon distribution in plants by modifying the expression and activity of key enzymes of sucrose biosynthesis, transport, and/or catabolism. Since sucrose is essential for the maintenance of all metabolic and physiological processes, the modifications addressed by AMF can significantly affect plant development and stress responses. AMF also modulate plant lipid biosynthesis to acquire storage reserves, generate biomass, and fulfill its life cycle. In this review we address the most relevant aspects of the influence of AMF on sucrose and lipid metabolism in plants, including its effects on sucrose biosynthesis both in photosynthetic and heterotrophic tissues, and the influence of sucrose on lipid biosynthesis in the context of the symbiosis. We present a hypothetical model of carbon partitioning between plants and AMF in which the coordinated action of sucrose biosynthesis, transport, and catabolism plays a role in the generation of hexose gradients to supply carbon to AMF, and to control the amount of carbon assigned to the fungus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guilherme Kenichi Hosaka ◽  
Fernando Henrique Correr ◽  
Carla Cristina da Silva ◽  
Danilo Augusto Sforça ◽  
Fernanda Zatti Barreto ◽  
...  

Multiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants. Here we show differentially expressed genes related to sucrose metabolism and cell wall biosynthesis, including genes encoding invertases, sucrose synthase and cellulose synthase. Our results showed increased expression of invertases in IN84-58, the genotype with lower sugar and higher fiber content, as well as delayed expression of secondary cell wall-related cellulose synthase for the other genotypes. Interestingly, genes involved with hormone metabolism were differentially expressed across time points in the three genotypes with higher soluble solids content. A similar result was observed for genes controlling maturation and transition to reproductive stages, possibly a result of selection against flowering in sugarcane breeding programs. These results indicate that carbon partitioning in apical culms of contrasting genotypes is mainly associated with differential cell wall biosynthesis, and may include early modifications for subsequent sucrose accumulation. Co-expression network analysis identified transcription factors related to growth and development, showing a probable time shift for carbon partitioning occurred in 10-month-old plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 424
Author(s):  
Will Wheeler ◽  
Brent Black ◽  
Bruce Bugbee

Cherry orchards are transitioning to high-density plantings and dwarfing rootstocks to maximize production, but the response of these rootstocks to drought stress is poorly characterized. We used a 16-container, automated lysimeter system to apply repeated water stress to ungrafted Krymsk® 5 and 6 rootstocks during two growing cycles. Drought stress was imposed by withholding irrigation until the daily transpiration rate of each tree was 25% and 30% of the unstressed rate during the first trial and second trial, respectively. After this point was reached, the root-zone water status was restored to field capacity. Whole-tree transpiration measurements were supplemented with leaf-level gas-exchange measurements. Krymsk® 6 had a higher rate of photosynthesis, more vigorous vegetative growth and less conservative stomatal regulation during incipient drought than Krymsk® 5. At harvest, carbon partitioning to roots was greater in Krymsk® 6 than Krymsk® 5. The conservative rate of water use in Krymsk® 5 could be a function of greater stomatal control or reduced carbon partitioning to roots, which thereby limited transpiration rates. Further studies are needed to confirm that these results are applicable to trees grown using a common grafted scion under field conditions.


2021 ◽  
Vol 497 ◽  
pp. 119526
Author(s):  
Jianwei Zhang ◽  
Gary O. Fiddler ◽  
David H. Young ◽  
Carol Shestak ◽  
Robert Carlson

Planta ◽  
2021 ◽  
Vol 254 (4) ◽  
Author(s):  
Benjamin A. Babst ◽  
Abhijit Karve ◽  
Anthony Sementilli ◽  
Ismail Dweikat ◽  
David M. Braun

2021 ◽  
Author(s):  
Jürgen Kreuzwieser ◽  
Mirjam Meischner ◽  
Michel Grün ◽  
Ana Maria Yáñez‐Serrano ◽  
Lukas Fasbender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document