scholarly journals Plant diversity is coupled with soil fungal diversity in a natural temperate steppe of northeastern China

Author(s):  
Dan Liu ◽  
Guohua Liu ◽  
Li Chen ◽  
Wangya Han ◽  
Dongbo Wang
2017 ◽  
Vol 215 (2) ◽  
pp. 756-765 ◽  
Author(s):  
Teng Yang ◽  
Jonathan M. Adams ◽  
Yu Shi ◽  
Jin-sheng He ◽  
Xin Jing ◽  
...  

Author(s):  
Congcong Shen ◽  
Jiang Wang ◽  
Ji-Zheng He ◽  
Feihai Yu ◽  
Yuan Ge

Interactions and feedbacks between aboveground and belowground biomes are fundamental in controlling ecosystem functions and stability. However, the relationship between plant diversity and soil microbial diversity is elusive. Moreover, it remains unknown whether plant diversity loss will deteriorate the stability of soil microbial communities. To shed light on these questions, we conducted a pot-based experiment to manipulate the plant richness gradient (1, 2, 4, 8 species) and plant (Symphyotrichum subulatum (Michx.) G.L.Nesom) invasion status. We found that, in the non-invasion treatment, soil fungal diversity significantly and positively correlated with plant diversity, while the relationship between bacterial and plant diversity was not significant. Under plant invasion, the coupling of plant-fungal alpha diversity relationship was enhanced, but the plant-fungal beta diversity relationship was decoupled. We also found significant positive relationships between plant diversity and soil microbial resistance. The observed positive relationships were determined by turnover (species substitution) and nestedness (species loss) processes for bacterial and fungal communities, respectively. Our study demonstrated that plant diversity enhanced soil fungal diversity and microbial resistance in response to plant invasion. This study expands our knowledge about the aboveground–belowground diversity relationship and diversity-stability relationship. Importance Our study newly showed plant invasion significantly altered relationships between aboveground and belowground diversity. Specifically, plant richness indirectly promoted soil fungal richness through the increase of soil TC without plant invasion, while plant richness had a direct positive effect on soil fungal richness under plant invasion. Our study highlights the plant diversity effect on soil fungal diversity especially under plant invasion, and the plant diversity effect on microbial resistance in response to plant invasion. These novel findings will add important knowledge about the aboveground–belowground diversity relationship and diversity-stability relationship.


Author(s):  
Francisco Arenas ◽  
Alfonso Navarro‐Ródenas ◽  
José Eduardo Marqués‐Gálvez ◽  
Stefano Ghignone ◽  
Antonietta Mello ◽  
...  

2015 ◽  
Vol 11 (9) ◽  
pp. 20150408 ◽  
Author(s):  
Johan Pansu ◽  
Richard C. Winkworth ◽  
Françoise Hennion ◽  
Ludovic Gielly ◽  
Pierre Taberlet ◽  
...  

During the late nineteenth century, Europeans introduced rabbits to many of the sub-Antarctic islands, environments that prior to this had been devoid of mammalian herbivores. The impacts of rabbits on indigenous ecosystems are well studied; notably, they cause dramatic changes in plant communities and promote soil erosion. However, the responses of fungal communities to such biotic disturbances remain unexplored. We used metabarcoding of soil extracellular DNA to assess the diversity of plant and fungal communities at sites on the sub-Antarctic Kerguelen Islands with contrasting histories of disturbance by rabbits. Our results suggest that on these islands, the simplification of plant communities and increased erosion resulting from the introduction of rabbits have driven compositional changes, including diversity reductions, in indigenous soil fungal communities. Moreover, there is no indication of recovery at sites from which rabbits were removed 20 years ago. These results imply that introduced herbivores have long-lasting and multifaceted effects on fungal biodiversity as well as highlight the low resiliency of sub-Antarctic ecosystems.


Author(s):  
S. J. Sapsford ◽  
A. Wakelin ◽  
D. A. Peltzer ◽  
I. A. Dickie

Sign in / Sign up

Export Citation Format

Share Document