scholarly journals Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity

2017 ◽  
Vol 215 (2) ◽  
pp. 756-765 ◽  
Author(s):  
Teng Yang ◽  
Jonathan M. Adams ◽  
Yu Shi ◽  
Jin-sheng He ◽  
Xin Jing ◽  
...  
2021 ◽  
Author(s):  
Weihan Jia ◽  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Kai Li ◽  
Sichao Huang ◽  
...  

<p>Lake sedimentary DNA (<em>sed</em>DNA) is an established tool to trace past changes in vegetation composition and plant diversity. However, little is known about the relationships between sedimentary plant DNA and modern vegetational and environmental conditions. In this study, we investigate i) the relationships between the preservation of sedimentary plant DNA and environmental variables, ii) the modern analogue of ancient plant DNA assemblages archived in lake sediments, and iii) the usability of sedimentary plant DNA for characterization of terrestrial and aquatic plant composition and diversity based on a large dataset of PCR-amplified plant DNA data retrieved from 259 lake surface sediments from the Tibetan Plateau and Siberia. Our results indicate the following: i) Lake-water electrical conductivity and pH are the most important variables for the preservation of plant DNA in lake sediments. We expect the best preservation conditions for sedimentary plant DNA in small deep lakes characterized by high water conductivities (≥100 μS cm<sup>-1</sup>) and neutral to slightly alkaline pH conditions (7–9). ii) Plant DNA metabarcoding is promising for palaeovegetation reconstruction in high mountain regions, where shifts in vegetation are solely captured by the <em>sed</em>DNA-based analogue matching and fossil pollen generally has poor modern analogues. However, the biases in the representation of some taxa could lead to poor analogue conditions. iii) Plant DNA metabarcoding is a reliable proxy to reflect modern vegetation types and climate characteristics at a sub-continental scale. However, the resolution of the <em>trn</em>L P6 loop marker, the incompleteness of the reference library, and the extent of <em>sed</em>DNA preservation are still the main limitations of this method. iv) Plant DNA metabarcoding is a suitable proxy to recover modern aquatic plant diversity, which is mostly affected by July temperature and lake-water conductivity. Ongoing warming might decrease macrophyte richness in the Tibetan Plateau and Siberia, and ultimately threaten the health of these important freshwater ecosystems. To conclude, sedimentary plant DNA presents a high correlation with modern vegetation and may therefore be an important proxy for reconstruction of past vegetation.</p>


2018 ◽  
Vol 28 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Haibin Yu ◽  
David C. Deane ◽  
Xinghua Sui ◽  
Suqin Fang ◽  
Chengjin Chu ◽  
...  

2021 ◽  
Vol 7 (5) ◽  
pp. eabc7741
Author(s):  
Shu-Feng Li ◽  
Paul J. Valdes ◽  
Alex Farnsworth ◽  
T. Davies-Barnard ◽  
Tao Su ◽  
...  

The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood. We approach this question by integrating modeling results and fossil data. We show that growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegetation and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic change is critical for understanding the finer details of Asian vegetation and plant diversity evolution.


2021 ◽  
Author(s):  
Wenlong Li ◽  
Chenli Liu ◽  
Huakun Zhou ◽  
Wenying Wang ◽  
Jing Xu ◽  
...  

Abstract Aim As one of the main human disturbance factors in the alpine grassland on the Tibetan Plateau, grazing not only directly affects grassland plant diversity and biomass, but also indirectly changes soil carbon (C) and nitrogen (N) of grassland. Despite of extensive field grazing experiments, the impacts of grazing on grassland diversity, soil C and N remain uncertain due to different grazing management.Methods We conducted a meta-analysis of 70 peer-reviewed publications to evaluate the general response of 11 variables related to alpine grassland plant-soil ecosystems to grazing.Results The results showed that grazing significantly increased species richness, Shannon-Wiener index and Pielou evenness index by 9.8%, 7.3% and 3.7%, respectively. Aboveground biomass, belowground biomass, soil organic carbon, soil total nitrogen, soil C: N ratio and soil moisture decreased by 41.9%, 17.7%, 13.1%, 12.6%, 3.3% and 20.8%, respectively. Soil bulk density and soil pH increased by 17.5% and 2.2%, respectively. Specifically, moderate grazing, long-duration (>5 years) and winter grazing contributed to the increase in the species richness, Shannon-Wiener index, and Pielou evenness index. Aboveground biomass, belowground biomass, soil organic carbon, soil total nitrogen and soil C: N ratio showed a decreasing trend with enhanced grazing intensity. Furthermore, grazing duration, grazing season, livestock type and grassland type also affected alpine grassland plant diversity, biomass, soil C and N.Conclusions Grazing is beneficial to the maintenance of plant diversity, but negatively affects the storage of soil C and N in alpine grassland on the Tibetan Plateau. We suggest that grazing should follow intermediate grazing practice and synthesize other appropriate grazing patterns, such as seasonal and rotation grazing, thus, further research on grazing management is needed in this regard.


Author(s):  
Congcong Shen ◽  
Jiang Wang ◽  
Ji-Zheng He ◽  
Feihai Yu ◽  
Yuan Ge

Interactions and feedbacks between aboveground and belowground biomes are fundamental in controlling ecosystem functions and stability. However, the relationship between plant diversity and soil microbial diversity is elusive. Moreover, it remains unknown whether plant diversity loss will deteriorate the stability of soil microbial communities. To shed light on these questions, we conducted a pot-based experiment to manipulate the plant richness gradient (1, 2, 4, 8 species) and plant (Symphyotrichum subulatum (Michx.) G.L.Nesom) invasion status. We found that, in the non-invasion treatment, soil fungal diversity significantly and positively correlated with plant diversity, while the relationship between bacterial and plant diversity was not significant. Under plant invasion, the coupling of plant-fungal alpha diversity relationship was enhanced, but the plant-fungal beta diversity relationship was decoupled. We also found significant positive relationships between plant diversity and soil microbial resistance. The observed positive relationships were determined by turnover (species substitution) and nestedness (species loss) processes for bacterial and fungal communities, respectively. Our study demonstrated that plant diversity enhanced soil fungal diversity and microbial resistance in response to plant invasion. This study expands our knowledge about the aboveground–belowground diversity relationship and diversity-stability relationship. Importance Our study newly showed plant invasion significantly altered relationships between aboveground and belowground diversity. Specifically, plant richness indirectly promoted soil fungal richness through the increase of soil TC without plant invasion, while plant richness had a direct positive effect on soil fungal richness under plant invasion. Our study highlights the plant diversity effect on soil fungal diversity especially under plant invasion, and the plant diversity effect on microbial resistance in response to plant invasion. These novel findings will add important knowledge about the aboveground–belowground diversity relationship and diversity-stability relationship.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6921 ◽  
Author(s):  
Yujie Niu ◽  
Jianwei Zhou ◽  
Siwei Yang ◽  
Bin Chu ◽  
Huimin Zhu ◽  
...  

Background Plateau zokor (Myospalax baileyi) is a subterranean rodent endemic to the Tibetan Plateau. This species has been generally viewed as a pest in China due to the competition for food with livestock and also causing soil erosion. As a result, plateau zokor has been the target of widespread poisoning or trapping campaigns designed to control or eliminate it since 1970s. But there is little research on the effect of plateau zokor on plant diversity in alpine rangelands. Therefore, objectively evaluating the positive effects of the plateau zokors disturbance on their living environment and plant communities is of great significance to understand the function of plateau zokor in alpine ecosystem. Methods Here, we selected three rangelands (alpine meadow, alpine steppe and alpine shrub meadow) in which plateau zokors are typically distributed on the Tibetan Plateau, and five zokor mound density gradients were selected in each rangeland type to study the effects of the mounds on soil moisture and temperature related to plant species diversity. Results The results showed that, with the mound density increasing, the soil temperature decreased significantly in all three rangeland types, and the soil moisture significantly increased in all three rangeland types. In the alpine meadow, both the plant diversity and cumulative species richness increased significantly with increasing mound density. The increase in broad-leaved forbs is the main reason for the increase of plant diversity in the alpine meadow disturbed by zokor mounds. In the alpine steppe, the plant diversity decreased significantly with increasing mound density, while the cumulative species richness initially decreased and then increased. In the alpine shrub meadow, the plant diversity first increased and then decreased with increasing mound density as did the cumulative species richness. In conclusion, plateau zokor mounds dominated the distribution of soil moisture and temperature and significantly affected plant diversity in these three rangelands on Tibetan Plateau; the results further deepen our understanding toward a co-evolved process.


Wetlands ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 1217-1227
Author(s):  
Hui Zhao ◽  
Da Wei ◽  
Yan Yan ◽  
Jianbo Wu ◽  
Xiaodan Wang

Sign in / Sign up

Export Citation Format

Share Document