The Nonlinear Equivalent Input Disturbance Coordinated Control for Enhancing the Stability of Hydraulic Generator System

2020 ◽  
Vol 15 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Lan-Mei Cong ◽  
Xiao-Cong Li
Author(s):  
Huiran Wang ◽  
Qidong Wang ◽  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Dongkui Tan

To reduce the adverse effect of the functional insufficiency of the steering system on the accuracy of path tracking, a path tracking approach considering safety of the intended functionality is proposed by coordinating automatic steering and differential braking in this paper. The proposed method adopts a hierarchical architecture consisting of a coordinated control layer and an execution control layer. In coordinated control layer, an extension controller considering functional insufficiency of the steering system, tire force characteristics and vehicle driving stability is proposed to determine the weight coefficients of automatic steering and the differential braking, and a model predictive controller is designed to calculate the desired front wheel angle and additional yaw moment. In execution control layer, a H∞ steering angle controller considering external disturbances and parameter uncertainty is designed to track desired front wheel angle, and a braking force distribution module is used to determine the wheel cylinder pressure of the controlled wheels. Both simulation and experiment results show that the proposed method can overcome the functional insufficiency of the steering system and improve the accuracy of path tracking while maintaining the stability of the autonomous vehicle.


2013 ◽  
Vol 860-863 ◽  
pp. 1073-1077 ◽  
Author(s):  
Zhi Guo Kong ◽  
Hong Wei Zhang ◽  
Zi Ning Tang

In order to improve the performance of a new type of full hybrid electric bus, this paper puts forward a set of coordinated control method to adjust the operation of the engine and two motors. In the engine start-stop logic control, comprehensive consideration of SOC, the speed of the bus and the accelerator pedal stroke are performed, while hysteresis control is introduced to improve the stability of the control; In the engine working point adjusting control, not only the engine speed command rate of change was optimized, but also the output torque rate was optimized to match the air injection and exhaust, etc. Further, the method based on dynamic constraints was used to optimize the working point adjustment process. At present, there are hundreds of busses operates in route. Results verify the feasibility and effectiveness of the control method. The vehicle has good fuel economy, and the dynamic performance and driving comfort are also greatly improved.


2022 ◽  
Vol 418 ◽  
pp. 126839
Author(s):  
Xiang Yin ◽  
Jinhua She ◽  
Min Wu ◽  
Daiki Sato ◽  
Kouhei Ohnishi

Sign in / Sign up

Export Citation Format

Share Document