Modified Inertia Synchronization Control for a Type-IV Wind Turbine Integrated with a Battery Energy Storage Unit

Author(s):  
Ning Gao ◽  
Xin Lin ◽  
Shun Sang
2019 ◽  
Vol 41 (6) ◽  
pp. 1519-1527 ◽  
Author(s):  
Xiaokun Dai ◽  
Yang Song ◽  
Taicheng Yang

This paper deals with the modelling and control for wind turbine combined with a battery energy storage system (WT/BESS). A proportional-integral (PI) controller of pitch angle is applied to adjust the output power of WT, and a method for battery scheduling is presented for maintaining the state of charging (SOC) of BESS. When the battery level is below the lower limit, we increase the expected output power of wind turbine through raising the operation point to charge the battery. Considering the effect of charging/discharging, a switched linear system model with two equilibriums is presented firstly for such WT/BESS system. The region stability is analyzed and an approach for estimating the corresponding stable region is also given. The effectiveness of the proposed results is demonstrated by a numerical example.


2012 ◽  
Vol 608-609 ◽  
pp. 1116-1119
Author(s):  
Cai Yun Guo ◽  
Hong Bin Wu

The photovoltaic(PV) generation model and the wind power generation model are introduced in this paper. Taking the best economy and reliability of system operation as the objective functions and the system power balance and battery storage performance indices as the constraints, the optimal capacity of battery energy storage can be determined with the Tabu search algorithm. With the example system, the simulation results show that the proposed models and the algorithm are correct.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1457 ◽  
Author(s):  
Shehab Al-Sakkaf ◽  
Mahmoud Kassas ◽  
Muhammad Khalid ◽  
Mohammad A. Abido

This work presents the operation of an autonomous direct current (DC) DC microgrid for residential house controlled by an energy management system based on low complexity fuzzy logic controller of only 25-rules to manage the power flow that supply house load demand. The microgrid consists of photovoltaic (PV), wind turbine, fuel cell, battery energy storage and diesel generator. The size of the battery energy storage is determined based on the battery sizing algorithm depending on the generation of renewables during all seasons of the year in the eastern region of Saudi Arabia. Two scenarios are considered in this work. In the first scenario: the microgrid consists of solar PV, wind turbine, battery energy storage and fuel cell. The fuzzy logic controller is optimized using an artificial bee colony technique in order to increase the system energy saving efficiency and to reduce the cost. In the second scenario: wind turbine is replaced by a diesel generator, also the rated power of the fuel cell is reduced. In this scenario, a new method is proposed to reduce the generation cost of the dispatchable sources in the microgrid by considering economic dispatch within the optimized fuzzy logic energy management system. To obtain the most suitable technique for solving the economic dispatch problem, three optimization techniques were used which are particle swarm optimization, genetic algorithm and artificial bee colony based on real environmental data and real house load demand. A comparison in terms of energy saving between the two scenarios and a comparison in terms of cost reduction between conventional economic dispatch method and the proposed method are presented.


Sign in / Sign up

Export Citation Format

Share Document