scholarly journals Generalised Pattern Search with Restarting Fitness Landscape Analysis

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ferrante Neri

AbstractFitness landscape analysis for optimisation is a technique that involves analysing black-box optimisation problems to extract pieces of information about the problem, which can beneficially inform the design of the optimiser. Thus, the design of the algorithm aims to address the specific features detected during the analysis of the problem. Similarly, the designer aims to understand the behaviour of the algorithm, even though the problem is unknown and the optimisation is performed via a metaheuristic method. Thus, the algorithmic design made using fitness landscape analysis can be seen as an example of explainable AI in the optimisation domain. The present paper proposes a framework that performs fitness landscape analysis and designs a Pattern Search (PS) algorithm on the basis of the results of the analysis. The algorithm is implemented in a restarting fashion: at each restart, the fitness landscape analysis refines the analysis of the problem and updates the pattern matrix used by PS. A computationally efficient implementation is also presented in this study. Numerical results show that the proposed framework clearly outperforms standard PS and another PS implementation based on fitness landscape analysis. Furthermore, the two instances of the proposed framework considered in this study are competitive with popular algorithms present in the literature.

2007 ◽  
Vol 15 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Jun He ◽  
Colin Reeves ◽  
Carsten Witt ◽  
Xin Yao

Various methods have been defined to measure the hardness of a fitness function for evolutionary algorithms and other black-box heuristics. Examples include fitness landscape analysis, epistasis, fitness-distance correlations etc., all of which are relatively easy to describe. However, they do not always correctly specify the hardness of the function. Some measures are easy to implement, others are more intuitive and hard to formalize. This paper rigorously defines difficulty measures in black-box optimization and proposes a classification. Different types of realizations of such measures are studied, namely exact and approximate ones. For both types of realizations, it is proven that predictive versions that run in polynomial time in general do not exist unless certain complexity-theoretical assumptions are wrong.


Sign in / Sign up

Export Citation Format

Share Document