fitness landscape analysis
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 53
Author(s):  
Sebastián Muñoz-Herrera ◽  
Karol Suchan

Vehicle Routing Problems (VRP) comprise many variants obtained by adding to the original problem constraints representing diverse system characteristics. Different variants are widely studied in the literature; however, the impact that these constraints have on the structure of the search space associated with the problem is unknown, and so is their influence on the performance of search algorithms used to solve it. This article explores how assignation constraints (such as a limited vehicle capacity) impact VRP by disturbing the network structure defined by the solution space and the local operators in use. This research focuses on Fitness Landscape Analysis for the multiple Traveling Salesman Problem (m-TSP) and Capacitated VRP (CVRP). We propose a new Fitness Landscape Analysis measure that provides valuable information to characterize the fitness landscape’s structure under specific scenarios and obtain several relationships between the fitness landscape’s structure and the algorithmic performance.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ferrante Neri

AbstractFitness landscape analysis for optimisation is a technique that involves analysing black-box optimisation problems to extract pieces of information about the problem, which can beneficially inform the design of the optimiser. Thus, the design of the algorithm aims to address the specific features detected during the analysis of the problem. Similarly, the designer aims to understand the behaviour of the algorithm, even though the problem is unknown and the optimisation is performed via a metaheuristic method. Thus, the algorithmic design made using fitness landscape analysis can be seen as an example of explainable AI in the optimisation domain. The present paper proposes a framework that performs fitness landscape analysis and designs a Pattern Search (PS) algorithm on the basis of the results of the analysis. The algorithm is implemented in a restarting fashion: at each restart, the fitness landscape analysis refines the analysis of the problem and updates the pattern matrix used by PS. A computationally efficient implementation is also presented in this study. Numerical results show that the proposed framework clearly outperforms standard PS and another PS implementation based on fitness landscape analysis. Furthermore, the two instances of the proposed framework considered in this study are competitive with popular algorithms present in the literature.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1363
Author(s):  
László Kovács ◽  
Anita Agárdi ◽  
Tamás Bányai

Vehicle routing problem (VRP) is a highly investigated discrete optimization problem. The first paper was published in 1959, and later, many vehicle routing problem variants appeared to simulate real logistical systems. Since vehicle routing problem is an NP-difficult task, the problem can be solved by approximation algorithms. Metaheuristics give a “good” result within an “acceptable” time. When developing a new metaheuristic algorithm, researchers usually use only their intuition and test results to verify the efficiency of the algorithm, comparing it to the efficiency of other algorithms. However, it may also be necessary to analyze the search operators of the algorithms for deeper investigation. The fitness landscape is a tool for that purpose, describing the possible states of the search space, the neighborhood operator, and the fitness function. The goal of fitness landscape analysis is to measure the complexity and efficiency of the applicable operators. The paper aims to investigate the fitness landscape of a complex vehicle routing problem. The efficiency of the following operators is investigated: 2-opt, order crossover, partially matched crossover, cycle crossover. The results show that the most efficient one is the 2-opt operator. Based on the results of fitness landscape analysis, we propose a novel traveling salesman problem genetic algorithm optimization variant where the edges are the elementary units having a fitness value. The optimal route is constructed from the edges having good fitness value. The fitness value of an edge depends on the quality of the container routes. Based on the performed comparison tests, the proposed method significantly dominates many other optimization approaches.


Sign in / Sign up

Export Citation Format

Share Document