Remarks on the generalized Cauchy-Dirichlet problem for graph mean curvature flow with driving force

Author(s):  
Hiroyoshi Mitake ◽  
Longjie Zhang
Author(s):  
Yoshikazu Giga ◽  
Norbert Požár

Abstract A general purely crystalline mean curvature flow equation with a nonuniform driving force term is considered. The unique existence of a level set flow is established when the driving force term is continuous and spatially Lipschitz uniformly in time. By introducing a suitable notion of a solution a comparison principle of continuous solutions is established for equations including the level set equations. An existence of a solution is obtained by stability and approximation by smoother problems. A necessary equi-continuity of approximate solutions is established. It should be noted that the value of crystalline curvature may depend not only on the geometry of evolving surfaces but also on the driving force if it is spatially inhomogeneous.


2019 ◽  
Vol 4 (1) ◽  
pp. 9-29
Author(s):  
Yoshikazu Giga ◽  
Hung V. Tran ◽  
Longjie Zhang

Abstract In this paper, we study an obstacle problem associated with the mean curvature flow with constant driving force. Our first main result concerns interior and boundary regularity of the solution. We then study in details the large time behavior of the solution and obtain the convergence result. In particular, we give full characterization of the limiting profiles in the radially symmetric setting.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2017 ◽  
Vol 369 (12) ◽  
pp. 8319-8342 ◽  
Author(s):  
Glen Wheeler ◽  
Valentina-Mira Wheeler

Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


Sign in / Sign up

Export Citation Format

Share Document