scholarly journals Development of a novel 3D-printed multifunctional thorax model simulator for the simulation-based training of tube thoracostomy

CJEM ◽  
2021 ◽  
Author(s):  
V. Brannan ◽  
C. L. Dunne ◽  
A. Dubrowski ◽  
M. H. Parsons
CJEM ◽  
2020 ◽  
Vol 22 (S1) ◽  
pp. S52-S52
Author(s):  
V. Brannan ◽  
C. Dunne ◽  
A. Dubrowski ◽  
M. Parsons

Innovation Concept: High-acuity, low-occurrence (HALO) procedures require skilled performance as they treat life-threatening conditions and are associated with significant morbidity when performed incorrectly. Simulation has proven useful for deliberate practice in a low stake setting. Tube thoracostomy is amendable to this approach. Commercially available trainers exist but often have limited realism and are prohibitively expensive particularly to non-academic centers. Three-dimensional (3D) printing produces models suitable for simulation, but no current simulator has been developed and validated for tube thoracostomy. The aim of this study was to develop such, a 3D-printed low-fidelity simulator validated for the simulation-based instruction of tube thoracostomy. Methods: The development of the simulator followed an iterative design cycle with collaboration between a design team and an emergency medicine expert. Its validity (face and content) was tested through hands-on practice and surveys completed by 15 acute-care practitioners. Participants performed the procedure on the simulator and then provided feedback through a mixed quantitative/qualitative product evaluation survey on appearance, realism (face validity) and value in procedural training (content validity). Mean values for overall appearance and content validity as a training tool were 4/5 and 4.3/5 respectively. All respondents felt the model was a useful adjunct. All but one stated it was a good replacement for pre-existing trainers. Curriculum, Tool, or Material: The model was initially printed in three parts using an Ultimaker 3 and Axiom Airwolf Dual 3D-printer. The ribcage was created using polylactic acid with polyvinyl alcohol support material. Printed sections were bonded using glue at interfaces requiring no flexibility. Flexible joints were made of varying amounts of thermoplastic polyurethane and thermoplastic elastomer. Skin overlay for the whole model was created with a cut out area for replaceable sections that subjects would incise to insert the chest tube. Skin was casted using platinum cured silicone in a 3D-printed mold. Total cost of all materials was roughly 80 CAD. Conclusion: The simulator was found to be a useful adjunct for the simulation-based practice of tube thoracostomy. As well, users found the model anatomically realistic and avoided high-cost and ethical issues. Further research will focus on optimization based on feedback and development into a multi-functional simulator for other HALO procedures.


2021 ◽  
Vol 6 (1) ◽  
pp. 109-113
Author(s):  
Wen Hao Chen ◽  
Shairah Radzi ◽  
Li Qi Chiu ◽  
Wai Yee Yeong ◽  
Sreenivasulu Reddy Mogali

Introduction: Simulation-based training has become a popular tool for chest tube training, but existing training modalities face inherent limitations. Cadaveric and animal models are limited by access and cost, while commercial models are often too costly for widespread use. Hence, medical educators seek a new modality for simulation-based instruction. 3D printing has seen growing applications in medicine, owing to its advantages in recreating anatomical detail using readily available medical images. Methods: Anonymised computer tomography data of a patient’s thorax was processed using modelling software to create a printable model. Compared to a previous study, 3D printing was applied extensively to this task trainer. A mixture of fused deposition modelling and material jetting technology allowed us to introduce superior haptics while keeping costs low. Given material limitations, the chest wall thickness was reduced to preserve the ease of incision and dissection. Results: The complete thoracostomy task trainer costs approximately SGD$130 (or USD$97), which is significantly cheaper compared to the average commercial task trainer. It requires approximately 118 hours of print time. The complete task trainer simulates the consistencies of ribs, intercostal muscles and skin. Conclusion: By utilising multiple 3D printing technologies, this paper aims to outline an improved methodology to produce a 3D printed chest tube simulator. An accurate evaluation can only be carried out after we improve on the anatomical fidelity of this prototype. A 3D printed task trainer has great potential to provide sustainable simulation-based education in the future.


Cureus ◽  
2019 ◽  
Author(s):  
Christine Goudie ◽  
Jason Kinnin ◽  
Michael Bartellas ◽  
Ravindra Gullipalli ◽  
Adam Dubrowski

Author(s):  
Jelle Man ◽  
Jos Maessen ◽  
Peyman Sardari Nia

Abstract OBJECTIVES Simulation-based training has shown to be effective in training new surgical skills. The objective of this study is to develop a flexible 3-dimensional (3D)-printed heart model that can serve as a foundation for the simulation of multiple cardiovascular procedures. METHODS Using a pre-existing digital heart model, 3D transoesophageal echocardiography scans and a thoracic CT scan, a full volume new heart model was developed. The valves were removed from this model, and the internal structures were remodelled to make way for insertable patient-specific structures. Groves at the location of the coronaries were created using extrusion tools in a computer-modelling program. The heart was hollowed to create a more flexible model. A suitable material and thickness was determined using prior test prints. An aortic root and valve was built by segmenting the root from a thoracic CT scan and a valve from a transoesophageal echocardiogram. Segmentations were smoothed, small holes in the valves were filled and surrounding structures were removed to make the objects suitable for 3D printing. RESULTS A hollow 3D-printed heart model with the wall thicknesses of 1.5 mm and spaces to insert coronary arteries, valves and aortic roots in various sizes was successfully printed in flexible material. CONCLUSIONS A flexible 3D-printed model of the heart was developed onto which patient-specific cardiac structures can be attached to simulate multiple procedures. This model can be used as a platform for surgical simulation of various cardiovascular procedures.


2020 ◽  
Vol 32 ◽  
pp. 101735
Author(s):  
Meera Mahadevan ◽  
Ann Francis ◽  
Albert Thomas
Keyword(s):  

2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Sang-Hoon Kang ◽  
Hak-Jin Kim ◽  
Ha-Won Park ◽  
Sang-Hwy Lee

The results of surgical simulation need to be transferred to the operation table with precision and confidence. We want to introduce a three-dimensional (3D)-printed maxillary cutting guide to perform the simulation-based maxillary osteotomy, interference removal, and the device guide for maxillary orthognathic surgery. The orthognathic simulation is performed with a horizontal osteotomy line and the maxillary segmental movement on a computed tomography (CT)-based 3D model. The maxillary cutting guide is designed as a band-shaped template encompassing the osteotomy line, bone interference area, and guiding holes. The design is exported to a 3D printer and the cutting guide is printed with biocompatible resin materials. The cutting guide was applied to 45 orthognathic surgeries. It could assist the easy and accurate osteotomy as planned and eliminate the repeated empirical checks of the premature interference site while preventing excessive bone reduction. This device guides the surgeon to place the osteotomy line, predict and remove the bony interferences, and place holes for additional surgical devices for maxillary orthognathic surgery.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 376
Author(s):  
Soroush Abedi ◽  
Nadine Joachimowicz ◽  
Nicolas Phillips ◽  
Hélène Roussel

This work is devoted to the development and manufacturing of realistic benchmark phantoms to evaluate the performance of microwave imaging devices. The 3D (3 dimensional) printed phantoms contain several cavities, designed to be filled with liquid solutions that mimic biological tissues in terms of complex permittivity over a wide frequency range. Numerical versions (stereolithography (STL) format files) of these phantoms were used to perform simulations to investigate experimental parameters. The purpose of this paper is two-fold. First, a general methodology for the development of a biological phantom is presented. Second, this approach is applied to the particular case of the experimental device developed by the Department of Electronics and Telecommunications at Politecnico di Torino (POLITO) that currently uses a homogeneous version of the head phantom considered in this paper. Numerical versions of the introduced inhomogeneous head phantoms were used to evaluate the effect of various parameters related to their development, such as the permittivity of the equivalent biological tissue, coupling medium, thickness and nature of the phantom walls, and number of compartments. To shed light on the effects of blood circulation on the recognition of a randomly shaped stroke, a numerical brain model including blood vessels was considered.


Author(s):  
William Dixon ◽  
Nathaniel Miller ◽  
Georgia G. Toal ◽  
Stefanie S. Sebok-Syer ◽  
Michael A. Gisondi

Abstract Background The use of simulators in medical education is critical for developing procedural competence prior to treating patients. Current training of emergency physicians to perform distal radius fracture reduction is inconsistent and inadequate. Approach We developed a 3D printed distal radius fracture simulation training model that is easy to assemble and relatively inexpensive. We present step-by-step instructions to reproduce the model. Evaluation The model was found to have high fidelity for training by both instructors and participants in a simulation-based mastery learning course. Reflection We successfully designed a low cost, easy to reproduce, high fidelity model for use in a simulation-based mastery learning course to teach distal radius fracture reduction.


Sign in / Sign up

Export Citation Format

Share Document