training modalities
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 78)

H-INDEX

22
(FIVE YEARS 4)

Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 32
Author(s):  
Natália Turri-Silva ◽  
Francisco Valdez Santos ◽  
Wanessa Camilly Caldas Rodrigues ◽  
Josuelir Silva Freire ◽  
Lawrence C. Cahalin ◽  
...  

Background and Objectives: To analyze the effects of aerobic, resistance, and combined training on peripheral and central components related to cardiorespiratory capacity after HTx. Materials and Methods: No time restriction was applied for study inclusion. MEDLINE/PubMed; EMBASE, CENTRAL, and PEDro databases were investigated. Studies reporting heart transplanted patients older than 19 years following aerobic, resistance, and combined training according. The outcomes included: V′O2 peak, VE/V’CO2 slope, heart rate (HR peak), systolic and diastolic blood pressure (SBP and DBP peak), maximum repetition test(1RM), sit-to-stand test, and flow-mediated dilation (FMD). The studies were selected by consensus. Four hundred ninety-two studies initially met the selection criteria. Cochrane handbook was used for abstracting data and assessing data quality and validity. Independent extraction by two observers was applied. Results: Isolated aerobic training leads to a greater increase in V′O2 peak than combined training compared to the control group (p < 0.001, I2 = 0%). However, no significant differences were found in the subgroup comparison (p = 0.19, I2 = 42.1%). HR peak increased similarly after aerobic and combined training. High-intensity interval training (HIIT) was better than moderate continuous intensity to increase the V′O2 after long term in HTx. Still, there is scarce evidence of HIIT on muscle strength and FMD. No change on VE/V’CO2 slope, FMD, and SBP, DBP peak. 1RM and the sit-to-stand test increased after resistance training (p < 0.001, I2 = 70%) and CT (p < 0.001, I2 = 0%) when compared to control. Conclusions: Aerobic and combined training effectively improve VO2 peak and muscle strength, respectively. HIIT seems the better choice for cardiorespiratory capacity improvements. More studies are needed to examine the impact of training modalities on VE/V’CO2 slope and FMD.


2021 ◽  
Vol 3 ◽  
Author(s):  
Paige E. Rice ◽  
Kiisa Nishikawa ◽  
Sophia Nimphius

The purpose of this study was to investigate the effect of a 12-week ankle-specific block progression training program on saut de chat leaping performance [leap height, peak power (PP), joint kinetics and kinematics], maximal voluntary isometric plantar flexion (MVIP) strength, and Achilles tendon (AT) stiffness. Dancers (training group n = 7, control group n = 7) performed MVIP at plantarflexed (10◦) and neutral ankle positions (0◦) followed by ramping isometric contractions equipped with ultrasound to assess strength and AT stiffness, respectively. Dancers also performed saut de chat leaps surrounded by 3-D motion capture atop force platforms to determine center of mass and joint kinematics and kinetics. The training group then followed a 12-week ankle-focused program including isometric, dynamic constant external resistance, accentuated eccentric loading, and plyometric training modalities, while the control group continued dancing normally. We found that the training group's saut de chat ankle PP (59.8%), braking ankle stiffness (69.6%), center of mass PP (11.4%), and leap height (12.1%) significantly increased following training. We further found that the training group's MVIP significantly increased at 10◦ (17.0%) and 0◦ (12.2%) along with AT stiffness (29.6%), while aesthetic leaping measures were unchanged (peak split angle, mean trunk angle, trunk angle range). Ankle-specific block progression training appears to benefit saut de chat leaping performance, PP output, ankle-joint kinetics, maximal strength, and AT stiffness, while not affecting kinematic aesthetic measures. We speculate that the combined training blocks elicited physiological changes and enhanced neuromuscular synchronization for increased saut de chat leaping performance in this cohort of dancers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stefano Dalla Gasperina ◽  
Loris Roveda ◽  
Alessandra Pedrocchi ◽  
Francesco Braghin ◽  
Marta Gandolla

Technology-supported rehabilitation therapy for neurological patients has gained increasing interest since the last decades. The literature agrees that the goal of robots should be to induce motor plasticity in subjects undergoing rehabilitation treatment by providing the patients with repetitive, intensive, and task-oriented treatment. As a key element, robot controllers should adapt to patients’ status and recovery stage. Thus, the design of effective training modalities and their hardware implementation play a crucial role in robot-assisted rehabilitation and strongly influence the treatment outcome. The objective of this paper is to provide a multi-disciplinary vision of patient-cooperative control strategies for upper-limb rehabilitation exoskeletons to help researchers bridge the gap between human motor control aspects, desired rehabilitation training modalities, and their hardware implementations. To this aim, we propose a three-level classification based on 1) “high-level” training modalities, 2) “low-level” control strategies, and 3) “hardware-level” implementation. Then, we provide examples of literature upper-limb exoskeletons to show how the three levels of implementation have been combined to obtain a given high-level behavior, which is specifically designed to promote motor relearning during the rehabilitation treatment. Finally, we emphasize the need for the development of compliant control strategies, based on the collaboration between the exoskeleton and the wearer, we report the key findings to promote the desired physical human-robot interaction for neurorehabilitation, and we provide insights and suggestions for future works.


Author(s):  
Sidra Ahmad Siraj ◽  
Vaishnavi Dilip Yadav ◽  
Moli Jai Jain ◽  
Om C. Wadhokar

Tetralogy of Fallot (TOF) is one of the most common cyanotic congenital heart disorders (CHDs). The children with CHD lead relatively sedentary lifestyles, on account of the restriction imposed by treating doctors, parents, and society and by themselves due to fear. The disability related to CHD results in an additional adverse impact on quality of life and physical activity level due to deconditioning. The cardiovascular effects of deconditioning are a decrease in cardiac output, increase resting heart rate with activity, decreased blood pressure in upright positions (orthostatic hypotension), and decreased exercise capacity. These effects would be more pronounced and disabling in an already compromised heart. The operative procedure for the correction of TOF is not curative rather a palliative one. After the correction of the TOF defects, the patient has reduced activity level and exercise capacity. Cardiac rehabilitation including Interval and continuous exercise training modalities were proven to be safe and efficient in improving exercise capacity and functioning of the heart.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Thomas Muehlbauer

Abstract Objective Improvements in balance performance through balance training programs in children have been reported in several studies. However, the influence of balance training modalities (e.g., training period, frequency, volume) on the training effectiveness have not yet been studied. To address this shortfall, the present study investigated the effects of balance training duration and volume (i.e., 240 min during 4 weeks versus 360 min during 6 weeks) on measures of static and dynamic balance performance in healthy children (N = 29) aged 10 years. Results Irrespective of balance training duration and volume, significant pre- to post-test improvements were found for variables of static (i.e., one-legged stance on foam ground, reduced number of floor contacts: p = .041, ηp2 = .15) and dynamic (i.e., Lower Quarter Y Balance test, increased anterior reach distance: p = .038, ηp2 = .15) balance performance but no group × test interactions were detected. These findings indicate that balance training is effective to improve static and dynamic balance performance in healthy children, but the effectiveness seems unaffected by the applied training duration and volume. Trial Registration Current Controlled Trials ISRCTN75170753 (retrospectively registered at 12th April, 2021).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Denise Börzsei ◽  
Renáta Szabó ◽  
Alexandra Hoffmann ◽  
Attila Harmath ◽  
Judith Sebestyén ◽  
...  

A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peijun Li ◽  
Jian Li ◽  
Yingqi Wang ◽  
Jun Xia ◽  
Xiaodan Liu

Objectives: Peripheral skeletal muscle dysfunction is an important extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD) that can be counteracted by exercise training. This study aimed to review the effect of three major exercise training modalities, which are used in pulmonary rehabilitation to improve on skeletal muscle mass, function, and exercise capacity in COPD.Methods: PubMed, Embase, EBSCO, Web of Science, and the PEDro database were searched on April 25, 2020. Only randomized controlled studies published in English evaluating the effects of exercise interventions on peripheral skeletal muscle mass, strength, and exercise capacity in stable COPD patients were included. The quality of included studies was evaluated using the PEDro scale. The mean difference (MD) or the standardized mean difference (SMD) with 95% CI was calculated to summarize the results. Subgroup meta-analysis was used to investigate the effects of different exercise training modalities and different outcome measures. The Grading of Recommendations Assessment, Development, and Evaluation guidelines were used to rate evidence quality.Results: A total of 30 randomized controlled trials involving 1,317 participants were included. Data from trials investigating endurance exercise (EE), resistance exercise (RE), and combined aerobic and resistance exercise (CE) were pooled into a meta-analysis, and the differences compared with the non-exercising COPD control were improvement in the muscle strength and exercise capacity in stable COPD patients. Subgroup meta-analysis for different exercise training modalities showed that RE significantly improved muscle strength (SMD = 0.6, 95% CI 0.35–0.84, I2 = 61%), EE and CE significantly increased VO2peak (EE: MD = 3.5, 95% CI 1.1–5.91, I2 = 92%; CE: MD = 1.66, 95% CI 0.22–3.1, I2 = 1%). Subgroup meta-analysis for different outcome measures showed that only isotonic strength was improved after exercise interventions (SMD = 0.89, 95% CI 0.51–1.26, I2 = 71%).Conclusion: Moderate evidence supports that exercise training in stable COPD patients has meaningful and beneficial effects on peripheral skeletal muscle strength and exercise capacity. Peripheral skeletal muscle shows a higher response to RE, and the isotonic test is relatively sensitive in reflecting muscle strength changes. The proportion of aerobic and resistance exercise components in a combined exercise program still needs exploration.Systematic Review Registration: The review was registered with the PROSPERO: (The website is https://www.crd.york.ac.uk/PROSPERO/, and the ID is CRD42020164868).


2021 ◽  
Vol 8 ◽  
Author(s):  
Kylie L. Crawford ◽  
Anna Finnane ◽  
Ristan M. Greer ◽  
Tamsin S. Barnes ◽  
Clive J. C. Phillips ◽  
...  

Musculoskeletal injuries remain a global problem for the Thoroughbred racing industry and there is conflicting evidence regarding the effect of age on the incidence of injuries. The ideal time to commence race training is strongly debated, with limited supporting literature. There is also conflicting evidence regarding the effect of high-speed exercise on musculoskeletal injuries. There is a strong interest in developing training and management strategies to reduce the frequency of injuries. The types of musculoskeletal injuries vary between 2-year-old and older horses, with dorsal metacarpal disease the most common injury in 2-year-old horses. It is likely that risk factors for injury in 2-year-old horses are different than those for older horses. It is also likely that the risk factors may vary between types of injury. This study aimed to determine the risk factors for musculoskeletal injuries and dorsal metacarpal disease. We report the findings of a large scale, prospective observational study of 2-year-old horses in Queensland, Australia. Data were collected weekly for 56-weeks, from 26 trainers, involving 535 2-year-old Thoroughbred racehorses, 1, 258 training preparations and 7, 512-weeks of exercise data. A causal approach was used to develop our statistical models, to build on the existing literature surrounding injury risk, by incorporating the previously established causal links into our analyses. Where previous data were not available, industry experts were consulted. Survival analyses were performed using Cox proportional hazards or Weibull regression models. Analysis of musculoskeletal injuries overall revealed the hazard was reduced with increased exposure to high-speed exercise [Hazard ratio (HR) 0.89, 95% Confidence Interval (CI) 0.84, 0.94, p &lt; 0.001], increased number of training preparations (HR 0.58, 95% CI 0.50, 0.67, p &lt; 0.001), increased rest before the training preparation (HR 0.89, 95% CI 0.83, 0.96, p = 0.003) and increased dam parity (HR 0.86, 95% CI 0.77, 0.97, p = 0.01). The hazard of injury was increased with increasing age that training commenced (HR 1.13, 95% CI 1.06, 1.19, p &lt; 0.001). Analyses were then repeated with the outcome of interest dorsal metacarpal disease. Factors that were protective against dorsal metacarpal disease and musculoskeletal injuries overall included: increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97, p = 0.001) and total cumulative days exercised as a gallop (HR 0.96, 95% CI 0.92, 0.99, p = 0.03), the number of the training preparations (HR 0.43, 95% CI 0.30, 0.61, p &lt; 0.001). The age that training commenced was harmful for both dorsal metacarpal disease (HR 1.17, 95% CI 1.07, 1.28, p &lt; 0.001 and overall musculoskeletal injuries.). The use of non-ridden training modalities was protective for dorsal metacarpal disease (HR 0.89, 95% CI 0.81, 0.97, p = 0.008), but not musculoskeletal injuries overall. The male sex increased the hazard of DMD compared to females (HR 2.58, 95% CI 1.20, 5.56, p = 0.02), but not MSI overall. In summary, the hazard of musculoskeletal injury is greatest for 2-year-old horses that are born from uniparous mares, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited rest before their training preparation. The hazard of dorsal metacarpal disease is greatest for 2-year-old horses that are males, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited use of non-ridden training modalities. Close monitoring of these high-risk horses during their training program could substantially reduce the impact of MSI. Furthermore, an understanding of how training methodologies affect the hazard of MSI facilitates modification of training programs to mitigate the risk impact of injury. The strengths of this study include a large sample size, a well-defined study protocol and direct trainer interviews. The main limitation is the inherent susceptibility to survival bias.


2021 ◽  
Vol 1 (4) ◽  
pp. 50-56
Author(s):  
Ana Luísa Freitas Siqueira ◽  
Gabriela Souza Faria ◽  
Pedro De Oliveira Neto ◽  
Maria Paula Fabrício de Andrade ◽  
Bruna Pereira Molina Cruz ◽  
...  

Physical training is used in the control of arterial hypertension (AH), especially in patients with higher levels of blood pressure (BP). However, there are still few studies on the effects of physical training on AH in less advanced stages of the disease. The aim of the present study was to assess the immediate and late acute effects of continuous moderate physical training (CMT) and high intensity interval training (HIIT) in patients with mild AH, and to assess which training method induces a greater hypotensive effect. A female patient, 43 years old, sedentary, diagnosed with mild AH (stage 1), taking Losartana 50 mg twice a day was studied. She underwent one CMT and one HIIT session, one week apart. BP measurements were taken before and after each session, as well as 24 hours before and after the sessions. After the physical training sessions, we observed a drop in the patient's BP that lasted up to 60 minutes, and a reduction in blood pressure levels on the day after the training. We conclude that both training modalities were efficient in reducing the BP of the patient with mild acute immediate and delayed hypertension.


2021 ◽  
pp. 1358863X2110345
Author(s):  
Mattia Fassora ◽  
Luca Calanca ◽  
Cécile Jaques ◽  
Lucia Mazzolai ◽  
Bengt Kayser ◽  
...  

We investigated how nonpain-based exercise therapy intensity (light-to-moderate or vigorous) affects improvements in walking performance and cardiorespiratory fitness of patients with symptomatic lower-extremity peripheral artery disease (PAD). We searched the Embase, MEDLINE, Cochrane, Web of Science, and Google Scholar databases up to April 2021 and included randomized controlled trials reporting training therapies targeting exercise intensity (heart rate, oxygen consumption, or perceived exertion). The main outcomes were walking performance (pain-free [PFWD] and maximal [MWD] walking distance) and cardiorespiratory fitness (V̇O2peak). Secondary subanalyses examined the training modality (walking or other modalities) and the approach (high-intensity interval or moderate-intensity training). A total of 1132 patients were included. Light-to-moderate was superior to vigorous exercise intensity in improving MWD (223 m [95% CI 174 to 271], p < 0.00001; 153 m [95% CI 113 to 193], p < 0.00001; respectively) and PFWD (130 m [95% CI 87 to 173], p < 0.00001; 83 m [95% CI 61 to 104], p < 0.00001; respectively). When training modalities were considered, walking at a vigorous intensity (272 m [95% CI 207 to 337], p < 0.00001) showed the largest improvement in MWD compared to other exercise modalities. A larger increase in V̇O2peak was observed following vigorous (3.0 mL O2·kg−1·min−1 [95% CI 2.4 to 3.6], p < 0.00001) compared to light-to-moderate (1.1 mL O2·kg−1·min−1 [95% CI 0.4 to 1.7], p = 0.001) exercise intensity. These results indicate that vigorous was less effective than light-to-moderate intensity in improving walking performance, whereas it was more effective in improving V̇O2peak. When the training modalities were considered, walking at a vigorous intensity showed the greatest improvement in MWD. (PROSPERO Registration No.: CRD42020199469)


Sign in / Sign up

Export Citation Format

Share Document