scholarly journals MP28: Development and validation of a novel three-dimensional printed thorax model simulator for the simulation-based training of tube thoracostomy

CJEM ◽  
2020 ◽  
Vol 22 (S1) ◽  
pp. S52-S52
Author(s):  
V. Brannan ◽  
C. Dunne ◽  
A. Dubrowski ◽  
M. Parsons

Innovation Concept: High-acuity, low-occurrence (HALO) procedures require skilled performance as they treat life-threatening conditions and are associated with significant morbidity when performed incorrectly. Simulation has proven useful for deliberate practice in a low stake setting. Tube thoracostomy is amendable to this approach. Commercially available trainers exist but often have limited realism and are prohibitively expensive particularly to non-academic centers. Three-dimensional (3D) printing produces models suitable for simulation, but no current simulator has been developed and validated for tube thoracostomy. The aim of this study was to develop such, a 3D-printed low-fidelity simulator validated for the simulation-based instruction of tube thoracostomy. Methods: The development of the simulator followed an iterative design cycle with collaboration between a design team and an emergency medicine expert. Its validity (face and content) was tested through hands-on practice and surveys completed by 15 acute-care practitioners. Participants performed the procedure on the simulator and then provided feedback through a mixed quantitative/qualitative product evaluation survey on appearance, realism (face validity) and value in procedural training (content validity). Mean values for overall appearance and content validity as a training tool were 4/5 and 4.3/5 respectively. All respondents felt the model was a useful adjunct. All but one stated it was a good replacement for pre-existing trainers. Curriculum, Tool, or Material: The model was initially printed in three parts using an Ultimaker 3 and Axiom Airwolf Dual 3D-printer. The ribcage was created using polylactic acid with polyvinyl alcohol support material. Printed sections were bonded using glue at interfaces requiring no flexibility. Flexible joints were made of varying amounts of thermoplastic polyurethane and thermoplastic elastomer. Skin overlay for the whole model was created with a cut out area for replaceable sections that subjects would incise to insert the chest tube. Skin was casted using platinum cured silicone in a 3D-printed mold. Total cost of all materials was roughly 80 CAD. Conclusion: The simulator was found to be a useful adjunct for the simulation-based practice of tube thoracostomy. As well, users found the model anatomically realistic and avoided high-cost and ethical issues. Further research will focus on optimization based on feedback and development into a multi-functional simulator for other HALO procedures.

2021 ◽  
pp. e20200137
Author(s):  
Alexandra Beaulieu ◽  
Stephanie Nykamp ◽  
John Phillips ◽  
Luis G. Arroyo ◽  
Judith Koenig ◽  
...  

Intra-articular injections are routinely performed to alleviate pain and inflammation associated with osteoarthritis in horses. Intra-articular injections require accurate needle placement to optimize clinical outcomes and minimize complications. This study’s objectives were to develop and validate a three-dimensional (3D) printed model of an equine cervical articular process joint to teach ultrasound-guided injections. Five identical models of an equine cervical articular process joint were 3D printed and embedded in 10% ballistic gelatin. Experts’ and novices’ ability to successfully insert a needle into the joint space of the model using ultrasound guidance was assessed and graded using an objective structured clinical examination (OSCE). Scores from experts and novices were compared to evaluate the construct validity of the model. Participants also answered a survey assessing the face and content validity of the model. Experts required less time (22.51 seconds) for correct needle placement into the model joint space than novices (35.96 seconds); however, this difference was not significant ( p = .53). Experts’ median total OSCE score (14) was significantly higher ( p = .03) than novices’ (12), supporting the model’s construct validity. Participants agreed on the face and content validity of the model by grading all survey questions greater than 7 on a 10-point Likert-type scale. In summary, we successfully developed a 3D printed model of an equine cervical articular process joint, partially demonstrated the construct validity of the model, and proved the face and content validity of this new training tool.


2020 ◽  
Vol 185 (11-12) ◽  
pp. e2026-e2031
Author(s):  
Charles Meyer ◽  
Francine Noda ◽  
Craig R Folsom

ABSTRACT Introduction The Stryker Surgical Simulator is a hybrid, temporal bone simulator that uses both tactile and haptic feedback combined with a computer interface. We sought to validate this simulator as an otolaryngology resident training tool for performing tympanomastoidectomy. Materials and Methods 15 residents and staff performed five basic cortical mastoidectomies. Staff surgeons comprised the “expert” cohort and resident surgeons comprised the “trainee” cohort. Subjective evaluation of the face validity and content validity was assessed via pre- and postquestionnaires. Objective evaluation of content validity was assessed through grading of each temporal bone dissection specimen, comparing time to task completion, and calculating the rate of injury to critical structures. Study approved by the Institutional Review Board (2013.0001). Results Post hoc questionnaires showed that both staff and residents subjectively rated the simulator favorably on face validity, content validity, and all global assessment categories, though there were no significant distinctions between groups (P > 0.05). The resident group had a significantly longer drilling time compared with the staff group throughout the series of tympanomastoidectomies (P = 0.008), and both groups showed a decrease in time to task completion with repetitive drilling. However, there were no significant differences in surgical performance as evaluated by a blinded senior neurotologist (P = 0.52). There were also no critical injuries recorded by the simulator in any of the 75 trials, preventing any evaluation on this measure. Conclusions Despite favorable subjective evaluations by both staff and residents, objective discrimination between experienced and novice participants was not achieved. This was likely in part due to inherent design flaws of the simulator. This emphasizes the potential shortcomings of surgical simulation models for highly technical procedures and points to the importance of intensive study and validation prior to incorporation of commercial training models into surgical training programs.


2013 ◽  
Vol 7 (7-8) ◽  
pp. 520 ◽  
Author(s):  
Tarek Alzahrani ◽  
Richard Haddad ◽  
Abdullah Alkhayal ◽  
Josee Delisle ◽  
Laura Drudi ◽  
...  

Objective: In this paper, we evaluate face, content and construct validity of the da Vinci Surgical Skills Simulator (dVSSS) across 3 surgical disciplines.Methods: In total, 48 participants from urology, gynecology and general surgery participated in the study as novices (0 robotic cases performed), intermediates (1-74) or experts (≥75). Each participant completed 9 tasks (Peg board level 2, match board level 2, needle targeting, ring and rail level 2, dots and needles level 1, suture sponge level 2, energy dissection level 1, ring walk level 3 and tubes). The Mimic Technologies software scored each task from 0 (worst) to 100 (best) using several predetermined metrics. Face and content validity were evaluated by a questionnaire administered after task completion. Wilcoxon test was used to perform pairwise comparisons.Results: The expert group comprised of 6 attending surgeons. The intermediate group included 4 attending surgeons, 3 fellows and 5 residents. The novices included 1 attending surgeon, 1 fellow, 13 residents, 13 medical students and 2 research assistants. The median number of robotic cases performed by experts and intermediates were 250 and 9, respectively. The median overall realistic score (face validity) was 8/10. Experts rated the usefulness of the simulator as a training tool for residents (content validity) as 8.5/10. For construct validity, experts outperformed novices in all 9 tasks (p < 0.05). Intermediates outperformed novices in 7 of 9 tasks (p < 0.05); there were no significant differences in the energy dissection and ring walk tasks. Finally, experts scored significantly better than intermediates in only 3 of 9 tasks (matchboard, dots and needles and energy dissection) (p < 0.05).Conclusions: This study confirms the face, content and construct validities of the dVSSS across urology, gynecology and general surgery. Larger sample size and more complex tasks are needed to further differentiate intermediates from experts.


2015 ◽  
Vol 129 (S3) ◽  
pp. S23-S29 ◽  
Author(s):  
M J Da Cruz ◽  
H W Francis

AbstractObjective:To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training.Methods:A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference.Results:Trainees’ experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development.Conclusion:A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.


2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Sang-Hoon Kang ◽  
Hak-Jin Kim ◽  
Ha-Won Park ◽  
Sang-Hwy Lee

The results of surgical simulation need to be transferred to the operation table with precision and confidence. We want to introduce a three-dimensional (3D)-printed maxillary cutting guide to perform the simulation-based maxillary osteotomy, interference removal, and the device guide for maxillary orthognathic surgery. The orthognathic simulation is performed with a horizontal osteotomy line and the maxillary segmental movement on a computed tomography (CT)-based 3D model. The maxillary cutting guide is designed as a band-shaped template encompassing the osteotomy line, bone interference area, and guiding holes. The design is exported to a 3D printer and the cutting guide is printed with biocompatible resin materials. The cutting guide was applied to 45 orthognathic surgeries. It could assist the easy and accurate osteotomy as planned and eliminate the repeated empirical checks of the premature interference site while preventing excessive bone reduction. This device guides the surgeon to place the osteotomy line, predict and remove the bony interferences, and place holes for additional surgical devices for maxillary orthognathic surgery.


2016 ◽  
Vol 24 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Przemyslaw Korzeniowski ◽  
Daniel C. Brown ◽  
Mikael H. Sodergren ◽  
Alastair Barrow ◽  
Fernando Bello

The goal of this study was to establish face, content, and construct validity of NOViSE—the first force-feedback enabled virtual reality (VR) simulator for natural orifice transluminal endoscopic surgery (NOTES). Fourteen surgeons and surgical trainees performed 3 simulated hybrid transgastric cholecystectomies using a flexible endoscope on NOViSE. Four of them were classified as “NOTES experts” who had independently performed 10 or more simulated or human NOTES procedures. Seven participants were classified as “Novices” and 3 as “Gastroenterologists” with no or minimal NOTES experience. A standardized 5-point Likert-type scale questionnaire was administered to assess the face and content validity. NOViSE showed good overall face and content validity. In 14 out of 15 statements pertaining to face validity (graphical appearance, endoscope and tissue behavior, overall realism), ≥50% of responses were “agree” or “strongly agree.” In terms of content validity, 85.7% of participants agreed or strongly agreed that NOViSE is a useful training tool for NOTES and 71.4% that they would recommend it to others. Construct validity was established by comparing a number of performance metrics such as task completion times, path lengths, applied forces, and so on. NOViSE demonstrated early signs of construct validity. Experts were faster and used a shorter endoscopic path length than novices in all but one task. The results indicate that NOViSE authentically recreates a transgastric hybrid cholecystectomy and sets promising foundations for the further development of a VR training curriculum for NOTES without compromising patient safety or requiring expensive animal facilities.


2020 ◽  
Vol 81 (05) ◽  
pp. 404-411
Author(s):  
Junhao Zhu ◽  
Guodao Wen ◽  
Chao Tang ◽  
Chunyu Zhong ◽  
Jin Yang ◽  
...  

Abstract Objective To present a three-dimensional (3D)-printed model that simulates endoscopic and exoscopic intracerebral hematoma (ICH) surgery with a tubular retractor. Methods We used 3D printing technology to develop the model that consisted of the skull frame and a replaceable inserted module. Edible gelatin and animal blood were placed into the module to mimic brain tissue and the hematoma. Twenty neurosurgeons were recruited to participate in our training program that required the use of an endoscope and an exoscope to aspirate the hematoma with a tubular retractor. Five postgraduates were asked to complete the entire training with the endoscope five times. Questionnaires were distributed for feedback after the training program. Results The more experienced surgeons obviously performed better than the rather inexperienced surgeons, verifying that our model could reflect the ability of the trainees. As the training progressed, the scores of the postgraduates increased, and the average score of the fifth training was obviously higher than the first score. No significant differences were observed in the trainees' performance with the endoscope and the exoscope. The feedback questionnaires showed the average score for value of the simulator as a training tool was a 3.65 (on a 4-point scale). Our model received better comments regarding the bone texture (mean: 3.20), the brain tissue texture (mean: 3.20), and the experience in aspirating the hematoma (mean: 3.10). The surgical position (mean: 2.95), surgical approach (mean: 2.90), and simulated brain tissue (mean: 2.85) should be improved. Conclusion Our model was practical for endoscopic and exoscopic ICH surgery training. The results of our program showed that prior surgical experience benefited the mastery of both the endoscopic and the exoscopic ICH surgery in the 3D-printed model. Our model could make mastering basic skills more efficient.


2021 ◽  
Author(s):  
Yoshihide Katayama ◽  
Naokado Ikeda ◽  
Shinji Kawabata ◽  
Motomasa Furuse ◽  
Naosuke Nonoguchi ◽  
...  

Abstract Background Virtual reality (VR) and mixed reality (MR) are now widely applied for preoperative simulation and intraoperative navigation. Methods We developed an MR-based simulator for endoscopic transnasal surgery (ETNS) with a head-mounted display HoloLens and evaluated its usefulness. This simulator consisted of MR images of patients and an MR endoscope. HoloLens was used for projection of MR images and recognition of markers. The MR images were reconstructed from the preoperative images of patients and superimposed onto the endoscopic training model of the head. The MR endoscope was superimposed onto a three-dimensional (3D) printed replica of an endoscope. The MR endoscopic images from the replica of the endoscope were projected in the operator’s visual field. The MR images followed the manipulation of the replica of the endoscope through a nasal cavity on the training model. To evaluate the developed simulator, the MR endoscopic images were compared with video-recorded actual operative endoscopic views. And face validity and content validity of the simulator were evaluated by senior residents, using a 5-point Likert scale. Result The 3D MR images through HoloLens correlated well with the actual intraoperative views. Although there was an innate learning curve with the simulator, the face validity and the content validity demonstrated effective simulation of an operative field of view with real-time characteristics of the surgical procedure. Conclusions Our developed simulator for ETNS will contribute to learning the unique and the limited surgical fields through the narrow surgical corridor with endoscope, particularly for novice surgeons.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


Sign in / Sign up

Export Citation Format

Share Document