Author(s):  
Meng-Sang Chew ◽  
Theeraphong Wongratanaphisan

Abstract This paper presents the analysis of the kinematics, dynamics and controls of tendon-driven mechanism under the framework of signal flow graphs. For decades, the signal flow graphs have been applied in many areas, particularly in controls, for determining the closed-loop transfer function of a control system. The tendon-driven mechanism considered here consists of several subsystems including actuator-controller dynamics, mechanism kinematics and mechanism dynamics. Each subsystem will be derived and represented by signal flow graphs. The representation of the whole system can be carried out by connecting the graphs of subsystems at the corresponding nodes. Transfer functions can then be obtained by using Mason’s rules. A 3-DOF robot finger utilizing tendon-driven mechanism is used as an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document