Radioactive Wastes and Associated Environmental Modeling Assessment, Groundwater Impacts of, Utilizing the United States as an Example

2020 ◽  
Vol 35 (3) ◽  
pp. 977-996 ◽  
Author(s):  
Matthew T. Morris ◽  
Jacob R. Carley ◽  
Edward Colón ◽  
Annette Gibbs ◽  
Manuel S. F. V. De Pondeca ◽  
...  

Abstract Missing observations at airports can cause delays in commercial and general aviation in the United States owing to Federal Aviation Administration (FAA) safety regulations. The Environmental Modeling Center (EMC) has provided interpolated temperature data from the National Oceanic and Atmospheric Administration’s Real-Time Mesoscale Analysis (RTMA) at airport locations throughout the United States since 2015, with these data substituting for missing temperature observations and mitigating impacts on air travel. A quality assessment of the RTMA is performed to determine if the RTMA could be used in a similar fashion for other weather observations, such as 10-m wind, ceiling, and visibility. Retrospective, data-denial experiments are used to perform the quality assessment by withholding observations from FAA-specified airports. Outliers seen in the RTMA ceiling and visibility analyses during events meeting or exceeding instrument flight rules suggest the RTMA should not be substituted for missing ceiling and visibility observations at this time. The RTMA is a suitable replacement for missing temperature observations for a subset of airports throughout most of the CONUS and Alaska, but not at all stations. Likewise, the RTMA is a suitable substitute for missing surface pressure observations at a subset of airports, with notable exceptions in regions of complex terrain. The RTMA may also be a suitable substitute for missing wind speed observations, provided the wind speed is ≤15 kt (1 kt ≈ 0.51 m s−1). Overall, these results suggest the potential for RTMA to substitute for additional missing observations while highlighting priority areas of future work for improving the RTMA.


1975 ◽  
Vol 37 (2) ◽  
pp. 641-642 ◽  
Author(s):  
Paul T. David

Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


2001 ◽  
Vol 15 (01) ◽  
pp. 53-87 ◽  
Author(s):  
Andrew Rehfeld

Every ten years, the United States “constructs” itself politically. On a decennial basis, U.S. Congressional districts are quite literally drawn, physically constructing political representation in the House of Representatives on the basis of where one lives. Why does the United States do it this way? What justifies domicile as the sole criteria of constituency construction? These are the questions raised in this article. Contrary to many contemporary understandings of representation at the founding, I argue that there were no principled reasons for using domicile as the method of organizing for political representation. Even in 1787, the Congressional district was expected to be far too large to map onto existing communities of interest. Instead, territory should be understood as forming a habit of mind for the founders, even while it was necessary to achieve other democratic aims of representative government.


Sign in / Sign up

Export Citation Format

Share Document