Time/Cost trade-offs

Keyword(s):  
Author(s):  
Sameh Monir El-Sayegh ◽  
Rana Al-Haj

Purpose The purpose of this paper is to propose a new framework for time–cost trade-off. The new framework provides the optimum time–cost value taking into account the float loss impact. Design/methodology/approach The stochastic framework uses Monte Carlo Simulation to calculate the effect of float loss on risk. This is later translated into an added cost to the trade-off problem. Five examples, from literature, are solved using the proposed framework to test the applicability of the developed framework. Findings The results confirmed the research hypothesis that the new optimum solution will be at a higher duration and cost but at a lower risk compared to traditional methods. The probabilities of finishing the project on time using the developed framework in all five cases were better than those using the classical deterministic optimization technique. Originality/value The objective of time–cost trade-off is to determine the optimum project duration corresponding to the minimum total cost. Time–cost trade-off techniques result in reducing the available float for noncritical activities and thus increasing the schedule risks. Existing deterministic optimization technique does not consider the impact of the float loss within the noncritical activities when the project duration is being crashed. The new framework allows project managers to exercise new trade-offs between time, cost and risk which will ultimately improve the chances of achieving project objectives.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
M. Ammar Alzarrad ◽  
Gary P. Moynihan ◽  
Muhammad T. Hatamleh ◽  
Siyuan Song

As is often the case in project scheduling, when the project duration is shortened to decrease total cost, the total float is lost resulting in added critical or nearly critical activities. This, in turn, results in decreasing the probability of completing the project on time and increases the risk of schedule delays. To solve this problem, this research developed a fuzzy multicriteria decision-making (FMCDM) model. The objective of this model is to help project managers improve their decisions regarding time-cost-risk trade-offs (TCRTO) in construction projects. In this model, an optimization algorithm based on fuzzy logic and analytic hierarchy process (AHP) has been used to analyze the time-cost-risk trade-off alternatives and select the best one based on selected criteria. The algorithm was implemented in the MATLAB software and applied to two case studies to verify and validate the presented model. The presented FMCDM model could help produce a more reliable schedule and mitigate the risk of projects running overbudget or behind schedule. Further, this model is a powerful decision-making instrument to help managers reduce uncertainties and improve the accuracy of time-cost-risk trade-offs. The presented FMCDM model employed fuzzy linguistic terms, which provide decision-makers with the opportunity to give their judgments as intervals comparing to fixed value judgments. In conclusion, the presented FMCDM model has high robustness, and it is an attractive alternative to the traditional methods to solve the time-cost-risk trade-off problem in construction.


2004 ◽  
Vol 1878 (1) ◽  
pp. 158-163 ◽  
Author(s):  
Roger Gorham ◽  
Seshasai Kanchi ◽  
Bill Cowart ◽  
Raghava Chari ◽  
Viresh Goel ◽  
...  

Author(s):  
Collin Huse ◽  
Michael J. Brusco

Problems associated with time–cost trade-offs in project networks, which are commonly referred to as crashing problems, date back nearly 60 years. Many prominent management science textbooks provide a traditional linear programming (LP) formulation for a classic project crashing problem, in which the time–cost trade-off for each activity is continuous (and linear) over a range of possible completion times. We have found that, for students who are being introduced to time–cost trade-offs and the principles of project crashing, an alternative LP formulation facilitates a greater conceptual understanding. Moreover, the alternative formulation uses only half of the decision variables in the traditional formulation and has fewer constraints for many problems encountered in management science textbooks. Results from an MBA section of operations management suggest that students prefer the alternative formulation. Additionally, we have developed an Excel workbook that generates all possible paths for a network, allows students to manually evaluate crashing decisions, and generates the alternative LP formulation. We demonstrate the workbook using a small synthetic example and a larger, real-world network from the literature. We also show that the alternative formulation can be adapted easily to accommodate discrete project crashing problems for which the time–cost trade-offs for activities are not necessarily linear.


2005 ◽  
Vol 36 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Mario Vanhoucke ◽  
Ann Vereecke ◽  
Paul Gemmel

The Project Scheduling Game is an IT-supported simulation game that illustrates the complexity of scheduling a real-life project. The project is based on a sequence of activities for a large real-life project at the Vlaamse Maatschappij voor Watervoorziening, which aims at the expansion of the capacity to produce purified water. The basic problem type that we use in the game has been described in the literature as a CPM (critical path method) network problem, and focuses on the time/cost relationship in each activity of the project. Indeed, by allocating resources to a particular activity, the manager decides about the duration and corresponding cost of each network activity. The manager schedules the project with the negotiated project deadline in mind, focusing on the minimization of the total project cost.


Sign in / Sign up

Export Citation Format

Share Document