The effect of visual similarity on short-term memory for spatial location: Implications for the capacity of visual short-term memory

1993 ◽  
Vol 83 (3) ◽  
pp. 203-224 ◽  
Author(s):  
Peter Walker ◽  
Graham J. Hitch ◽  
Sallyann Duroe
Author(s):  
Kevin Dent

In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.


2012 ◽  
Vol 24 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Anna Christina Nobre

Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top–down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top–down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.


Author(s):  
Jessica L. Holt ◽  
Jean-François Delvenne

Recent research on visual short-term memory (VSTM) has revealed the existence of a bilateral field advantage (BFA – i.e., better memory when the items are distributed in the two visual fields than if they are presented in the same hemifield) for spatial location and bar orientation, but not for color ( Delvenne, 2005 ; Umemoto, Drew, Ester, & Awh, 2010 ). Here, we investigated whether a BFA in VSTM is constrained by attentional selective processes. It has indeed been previously suggested that the BFA may be a general feature of selective attention ( Alvarez & Cavanagh, 2005 ; Delvenne, 2005 ). Therefore, the present study examined whether VSTM for color benefits from bilateral presentation if attentional selective processes are particularly engaged. Participants completed a color change detection task whereby target stimuli were presented either across both hemifields or within one single hemifield. In order to engage attentional selective processes, some trials contained irrelevant stimuli that needed to be ignored. Targets were selected based on spatial locations (Experiment 1) or on a salient feature (Experiment 2). In both cases, the results revealed a BFA only when irrelevant stimuli were presented among the targets. Overall, the findings strongly suggest that attentional selective processes at encoding can constrain whether a BFA is observed in VSTM.


Author(s):  
Yuhong Jiang

Abstract. When two dot arrays are briefly presented, separated by a short interval of time, visual short-term memory of the first array is disrupted if the interval between arrays is shorter than 1300-1500 ms ( Brockmole, Wang, & Irwin, 2002 ). Here we investigated whether such a time window was triggered by the necessity to integrate arrays. Using a probe task we removed the need for integration but retained the requirement to represent the images. We found that a long time window was needed for performance to reach asymptote even when integration across images was not required. Furthermore, such window was lengthened if subjects had to remember the locations of the second array, but not if they only conducted a visual search among it. We suggest that a temporal window is required for consolidation of the first array, which is vulnerable to disruption by subsequent images that also need to be memorized.


2013 ◽  
Author(s):  
Deepna T. Devkar ◽  
Wei Ji Ma ◽  
Jeffrey S. Katz ◽  
Anthony A. Wright

Sign in / Sign up

Export Citation Format

Share Document