ECG changes after cerebral stimulation. I. Anomalous atrioventricular excitation elicited by electrical stimulation of the mesencephalic reticular formation

1964 ◽  
Vol 68 (1) ◽  
pp. 98-101 ◽  
Author(s):  
H. Page Mauck ◽  
Charles H. Hockman ◽  
Ebbe C. Hoff
1979 ◽  
Vol 237 (5) ◽  
pp. R278-R284 ◽  
Author(s):  
Y. Sakuma ◽  
D. W. Pfaff

Electrical stimulation in the mesencephalic central gray (CG) and adjacent subtectum through chronically implanted electrodes in free-moving estrogen-primed ovariectomized female rats elicited a rapid and large facilitation of the lordosis reflex in response to either male mounts or manula cutaneous stimuli. Unilateral stimulation was sufficient for this effect. The facilitation increased in a graded manner to increased stimulus intensity, and was optimally evoked by stimuli delivered at 50--150 Hz. Facilitation disappeared rapidly following the end ot electrical stimulation, and within 15 min, reflex performance returned to the prestimulation level. Lordosis facilitation appeared when no aversive responses occurred; stimulation with comparable parameters at the lateral edge of CG or in the mesencephalic reticular formation often resulted in postural changes or aversive responses but was not able to facilitate lordosis. Lordosis refelx facilitation was probably mediated by projections descending from neurons in and around the CG, and represents stimulation of a functional link between ascending somatosensory and descending motor systems for the control of lordosis behavior.


1990 ◽  
Vol 63 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
L. Villanueva ◽  
K. D. Cliffer ◽  
L. S. Sorkin ◽  
D. Le Bars ◽  
W. D. Willis

1. Recordings were made in anesthetized monkeys from neurons in the medullary reticular formation (MRF) caudal to the obex. Responses of 19 MRF neurons to mechanical, thermal, and/or electrical stimulation were examined. MRF neurons exhibited convergence of nociceptive cutaneous inputs from widespread areas of the body and face. 2. MRF neurons exhibited low levels of background activity. Background activity increased after periods of intense cutaneous mechanical or thermal stimulation. Nearly all MRF neurons tested failed to respond to heterosensory stimuli (flashes, whistle sounds), and none responded to joint movements. 3. MRF neurons were excited by and encoded the intensity of noxious mechanical stimulation. Responses to stimuli on contralateral limbs were greater than those to stimuli on ipsilateral limbs. Responses were greater to stimuli on the forelimbs than to stimuli on the hindlimbs. 4. MRF neurons responded to noxious thermal stimulation (51 degrees C) of widespread areas of the body. Mean responses from stimulation at different locations were generally parallel to those for noxious mechanical stimulation. Responses increased with intensity of noxious thermal stimulation (45-50 degrees C). 5. MRF neurons responded with one or two peaks of activation to percutaneous electrical stimulation applied to the limbs, the face, or the tail. The differences in latency of responses to stimulating two locations along the tail suggested that activity was elicited by activation of peripheral fibers with a mean conduction velocity in the A delta range. Stimulation of the contralateral hindlimb elicited greater responses, with lower thresholds and shorter latencies, than did stimulation of the ipsilateral hindlimb. 6. Electrophysiological properties of monkey MRF neurons resembled those of neurons in the medullary subnucleus reticularis dorsalis (SRD) in the rat. Neurons in the caudal medullary reticular formation could play a role in processing nociceptive information. Convergence of nociceptive cutaneous input from widespread areas of the body suggests that MRF neurons may contribute to autonomic, affective, attentional, and/or sensory-motor processes related to pain.


Sign in / Sign up

Export Citation Format

Share Document