Differing effect of heart rate on ventricular fibrillation threshold at constant coronary perfusion flow versus perfusion pressure

1982 ◽  
Vol 49 (4) ◽  
pp. 971
Author(s):  
Alexandros C. Kralios ◽  
David A. Thorne ◽  
Theofilos J. Tsagaris ◽  
Hiroshi Kuida
Resuscitation ◽  
2011 ◽  
Vol 82 (8) ◽  
pp. 1092-1099 ◽  
Author(s):  
Fanny Vaillant ◽  
Leila Dehina ◽  
Alejandro Mazzadi ◽  
Jacques Descotes ◽  
Philippe Chevalier ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Tao Yu ◽  
Giuseppe Ritagno ◽  
Jun H Cho ◽  
Shijie Sun ◽  
Max H Weil ◽  
...  

We have previously reported, on the basis of experimental studies, that interruptions of CPR as little as 10 seconds adversely affect the outcomes of CPR. We therefore investigated interruptions of only 5 seconds for delivering ventilation, which corresponds to the current AHA algorithm in which of 30 compressions followed by 2 ventilations are mandated. We hypothesized that even 5 seconds interruption significantly reduces CPP and with significant delay prior to restoring pre-interruption levels. Ventricular fibrillation (VF) was induced and untreated for 15 minutes in 33 male domestic pigs weighting 40±3 Kg. Chest compressions delivered with the aid of mechanical compressor (Thumper, 1000, MI Instruments) with a rate of 100/min. Ventilations were administrated with a compression / ventilation ratio of 30:2 such that 2 ventilations were delivered over a 5 seconds interval. CPP was continuously measured as the difference between comparison diastolic and simultaneous left atrial pressure. CPP significantly decreased during interruptions for ventilation from 20.5±12.8 mmHg to 9.8±6.7 mmHg( P <0.001). After chest compressions were restarted, the CPP increased to 12.5±7.6 mmHg after first compression( P <0.001). A total of 12±7 compressions over a mean interval of 7.2±4.3 seconds was required prior to restoration of CPP to levels corresponding to those that preceded the interruption. As little as the five seconds of interruption in chest compression currently mandated for 30 to 2 ventilations during CPR significantly reduced CPP and delayed restoration of CPP to its pre-interruption level.


2009 ◽  
Vol 13 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Timothy J. Mader ◽  
Allie T. Paquette ◽  
David D. Salcido ◽  
Brian H. Nathanson ◽  
James J. Menegazzi

2019 ◽  
Author(s):  
Hedvig Takács

In this work, we used the isolated, Langendorff perfused heart model for arrhythmia investigations, and the data of the arrhythmia analysis served for clarifying and characterising the physiology of the model and also, to validate arrhythmia definitions. In our first investigation we examined the relationship between ventricular rhythm and coronary flow autoregulation in Langendorff perfused guinea pig hearts. It is a well-known fact, that heart rate affects coronary flow, but the mechanism is complex, especially in experimental settings. We examined whether ventricular irregularity influences coronary flow independently of heart rate. According to our results, during regular rhythm, left ventricular pressure exceeded perfusion pressure and prevented coronary perfusion at peak systole. However, ventricular irregularity significantly increased the number of beats in which left ventricular pressure remained below perfusion pressure, facilitating coronary perfusion. We found that in isolated hearts, cycle length irregularity increases the slope of the positive linear correlation between mean ventricular rate and coronary flow via producing beats in which left ventricular pressure remains below perfusion pressure. This means that changes in rhythm have the capacity to influence coronary flow independently of heart rate in isolated hearts perfused at constant pressure. In our second investigation we examined whether the arrhythmia definitions of Lambeth Conventions I (LC I) and Lambeth Conventions II (LC II) yield the same qualitative results and whether LC II improves inter-observer agreement. Data obtained with arrhythmia definitions of LC I and LC II were compared within and between two independent observers. Applying ventricular fibrillation (VF) definition of LC II significantly increased VF incidence and reduced VF onset time irrespective of treatment by detecting ‘de novo’ VF episodes. Using LC II reduced the number of ventricular tachycardia (VT) episodes and simultaneously increased the number of VF episodes, and thus, LC II masked the significant antifibrillatory effects of flecainide and the high K+ concentration. When VF incidence was tested, a very strong interobserver agreement was found according to LC I, whereas using VF definition of LC II reduced inter-observer agreement. It is concluded that LC II shifts some tachyarrhythmias from VT to VF class. VF definition of LC II may change the conclusion of pharmacological, physiological and pathophysiological arrhythmia investigations and may reduce inter-observer agreement.


Resuscitation ◽  
2001 ◽  
Vol 51 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Ulrich Achleitner ◽  
Volker Wenzel ◽  
Hans-Ulrich Strohmenger ◽  
Karl H Lindner ◽  
Michael A Baubin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document