Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure

1990 ◽  
Vol 66 (11) ◽  
pp. D22-D32 ◽  
Author(s):  
Alan T. Hirsch ◽  
Yigal M. Pinto ◽  
Heribert Schunkert ◽  
Victor J. Dzau
1984 ◽  
Vol 53 (4) ◽  
pp. 614-618 ◽  
Author(s):  
Günter A.J. Riegger ◽  
Gerhart Liebau ◽  
Matthias Holzschuh ◽  
Dorothea Witkowski ◽  
Hansgeorg Steilner ◽  
...  

2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


Author(s):  
João Luís Vieira Monteiro de Barros ◽  
Maíra Glória Cardoso ◽  
Caroline Amaral Machado ◽  
Érica Leandro Marciano Vieira ◽  
Rodrigo Moreira Faleiro ◽  
...  

2008 ◽  
Vol 294 (1) ◽  
pp. R26-R32 ◽  
Author(s):  
J. C. B. Ferreira ◽  
A. V. Bacurau ◽  
F. S. Evangelista ◽  
M. A. Coelho ◽  
E. M. Oliveira ◽  
...  

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking α2A and α2C adrenoceptor knockout (α2A/α2CARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, α2A/α2CARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, α2A/α2CARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT1 receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.


Sign in / Sign up

Export Citation Format

Share Document