The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice

2008 ◽  
Vol 294 (1) ◽  
pp. R26-R32 ◽  
Author(s):  
J. C. B. Ferreira ◽  
A. V. Bacurau ◽  
F. S. Evangelista ◽  
M. A. Coelho ◽  
E. M. Oliveira ◽  
...  

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking α2A and α2C adrenoceptor knockout (α2A/α2CARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, α2A/α2CARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, α2A/α2CARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT1 receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.

2000 ◽  
Vol 1 (3) ◽  
pp. 210-226 ◽  
Author(s):  
Shann Dixon Kim

Angiotensin II (ANG II), the effector hormone of the renin-angiotensin system (RAS), has been implicated in the pathophysiology and progression of heart failure. Therefore, the measurement of ANGII has become important to characterize the role of this neurohormone in heart failure. However, because ANG II has been difficult to measure, other components of the RAS have been measured to characterize ANG II production. The RAS components (e.g., renin, angiotensin I–converting enzyme [ACE], angiotensin II) have been measured with a variety of techniques. In this review, RAS physiology and the techniques used to measure the RAS components are discussed. In addition, the advantages and disadvantages of the RAS measurement methods are described.


2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


1999 ◽  
Vol 277 (5) ◽  
pp. H1786-H1792 ◽  
Author(s):  
Frans H. H. Leenen ◽  
Baoxue Yuan ◽  
Bing S. Huang

In chronic heart failure (CHF), sympathetic activity increases in parallel with the impairment of left ventricle (LV) function, and sympathetic hyperactivity has been postulated to contribute to the progression of heart failure. In the brain, compounds with ouabain-like activity (“ouabain,” for brevity) and the renin-angiotensin system contribute to sympathetic hyperactivity in rats with CHF after myocardial infarction (MI). In the present studies, we assessed whether, in rats, chronic blockade of brain “ouabain” or the brain renin-angiotensin system inhibits the post-MI LV dysfunction. In rats, an MI was induced by acute coronary artery ligation. At either 0.5 or 4 wk post-MI, chronic treatment with Fab fragments for blocking brain “ouabain” or with losartan for blocking brain AT1 receptors was started and continued until 8 wk post-MI using osmotic minipumps connected to intracerebroventricular cannulas. At 8 wk post-MI, in conscious rats, LV pressures were measured at rest and in response to volume and pressure overload, followed by LV passive pressure-volume curves in vitro. At 8 wk post-MI, control MI rats exhibited clear increases in LV end-diastolic pressure (LVEDP) at rest and in response to pressure and volume overload. LV pressure-volume curves in vitro showed a marked shift to the right. Intravenous administration of the Fab fragments or losartan at rates used for central blockade did not affect these parameters. In contrast, chronic central blockade with either Fab fragments or losartan significantly lowered LVEDP at rest (only in 0.5- to 8-wk groups) and particularly in response to pressure or volume overload. LV dilation, as assessed from LV pressure-volume curves, was also significantly inhibited. These results indicate that chronic blockade of brain “ouabain” or brain AT1 receptors substantially inhibits development of LV dilation and dysfunction in rats post-MI.


2001 ◽  
Vol 281 (6) ◽  
pp. R1854-R1861 ◽  
Author(s):  
Raynald Bergeron ◽  
Michael Kjær ◽  
Lene Simonsen ◽  
Jens Bülow ◽  
Dorthe Skovgaard ◽  
...  

The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O2 consumption (V˙o 2 max) followed by 30 min at 70% V˙o 2 maxeither with [angiotensin-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an ∼20-fold increase ( P < 0.001) in ANG II levels in the control group (5.4 ± 1.0 to 102.0 ± 25.1 pg/ml), whereas this response was blunted during ACE blockade (8.1 ± 1.2 to 13.2 ± 2.4 pg/ml) and in response to an orthostatic challenge performed postexercise. Apart from lactate and cortisol, which were higher in the ACE-blockade group vs. the control group, hormones, metabolites, V˙o 2, and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 ± 0.12, ACE blockade; 1.59 ± 0.18 l/min, control) decreased during moderate exercise (0.78 ± 0.07, ACE blockade; 0.74 ± 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 ± 0.06, ACE blockade; 0.68 ± 0.10 mmol/min, control) increased during moderate exercise (1.97 ± 0.29, ACE blockade; 1.91 ± 0.41 mmol/min, control). Refuting a major role of the RAS for these responses, no differences in the pattern of change of splanchnic blood flow and splanchnic glucose production were observed during ACE blockade compared with controls. This study demonstrates that the normal increase in ANG II levels observed during prolonged exercise in humans does not play a major role in the regulation of splanchnic blood flow and glucose production.


2020 ◽  
Vol 319 (4) ◽  
pp. L596-L602
Author(s):  
Rodrigo Pacheco Silva-Aguiar ◽  
Diogo Barros Peruchetti ◽  
Patricia Rieken Macedo Rocco ◽  
Alvin H. Schmaier ◽  
Patrícia Machado Rodrigues e Silva ◽  
...  

A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.


2006 ◽  
Vol 111 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Frederic Lefebvre ◽  
Annick Préfontaine ◽  
Angelino Calderone ◽  
Alexandre Caron ◽  
Jean-François Jasmin ◽  
...  

Lung structural remodelling, characterized by myofibroblast proliferation and collagen deposition, contributes to impaired functional capacity in CHF (congestive heart failure). As the lung is the primary site for the formation of Ang II (angiotensin II), local modifications of this system could contribute to lung remodelling. Rats with CHF, induced following myocardial infarction (MI) via coronary artery ligation, were compared with sham-operated controls. The MI group developed lung remodelling as confirmed by morphometric measurements and immunohistochemistry. Pulmonary Ang II concentrations increased more than 6-fold (P<0.01), and AT1 (Ang II type 1) receptor expression was elevated by 3-fold (P<0.01) with evidence of distribution in myofibroblasts. AT2 (Ang II type 2) receptor expression was unchanged. In isolated lung myofibroblasts, AT1 and AT2 receptors were expressed, and Ang II stimulated proliferation as measured by [3H]thymidine incorporation. In normal rats, chronic intravenous infusion of Ang II (0.5 mg·kg−1 of body weight·day−1) for 28 days significantly increased mean arterial pressure (P<0.05), without pulmonary hypertension, lung remodelling or a change in AT1 receptor expression. We conclude that there is a modification of the pulmonary renin–angiotensin system in CHF, with increased Ang II levels and AT1 receptor expression on myofibroblasts. Although this may contribute to lung remodelling, the lack of effect of increased plasma Ang II levels alone suggests the importance of local pulmonary Ang II levels combined with the effect of other factors activated in CHF.


Sign in / Sign up

Export Citation Format

Share Document