Relationship of fetal oxygen consumption and acid-base balance to fetal hematocrit

1985 ◽  
Vol 151 (7) ◽  
pp. 844-851 ◽  
Author(s):  
Daniel I. Edelstone ◽  
Mark E. Caine ◽  
Fred D. Fumia
1976 ◽  
Vol 231 (2) ◽  
pp. 579-587 ◽  
Author(s):  
EE Nattie ◽  
SM Tenney

We have examined the effect of K depletion on CSF [HCO3-] homeostasis in awake rats. The relationship of CSF [HCO3-] to arterial [HCO3-] in metabolic acid-base disturbances is displaced is an upward direction and has a significantly increased slope in K-depleted vs. control rats (0.51 +/- 0.02 vs. 0.42 +/- 0.02). Results of partial K-repletion experiments, with peripheral acid-base balance held constant, suggest that the effect is K specific. The K-depleted animals also exhibit a wider (CSF-arterial) PCO2 difference than controls (11.1 vs. 8.4 mmHg). When CSF [HCO3-] is shown as a function of CSF PCO2 the data of K-depleted rats are no longer displaced when compared to controls but still have a significantly greater slope (1.21 +/- 0.23 vs. 0.89 +/- 0.08). This increased slope is interpreted to reflect enhanced HCO3- movement from blood to CSF at high arterial [HCO3-]. Analysis of our data and observations from the literature in conditions of mixed acid-base disturbances suggest that CSF [HCO3-] is determined by a) CSF PCO2 and b) the level of arterial [HCO3-] when the latter is greater than the normal CSF [HCO3-].


2003 ◽  
Vol 95 (6) ◽  
pp. 2333-2344 ◽  
Author(s):  
E. Wrenn Wooten

A general formalism for calculating parameters describing physiological acid-base balance in single compartments is extended to multicompartment systems and demonstrated for the multicompartment example of human whole blood. Expressions for total titratable base, strong ion difference, change in total titratable base, change in strong ion difference, and change in Van Slyke standard bicarbonate are derived, giving calculated values in agreement with experimental data. The equations for multicompartment systems are found to have the same mathematical interrelationships as those for single compartments, and the relationship of the present formalism to the traditional form of the Van Slyke equation is also demonstrated. The multicompartment model brings the strong ion difference theory to the same quantitative level as the base excess method.


2003 ◽  
Vol 26 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Z. N. Al-Hassnan ◽  
S. A. Boyadjiev ◽  
V. Praphanphoj ◽  
A. Hamosh ◽  
N. E. Braverman ◽  
...  

1983 ◽  
Vol 54 (1) ◽  
pp. 3-12 ◽  
Author(s):  
E. E. Nattie

This review emphasizes the importance of strong ions in the regulation of cerebrospinal fluid (CSF) acid-base balance. In a solution like CSF that is devoid of nonbicarbonate buffers. [H+] and [HCO-3] are dependent variables, the independent variables being the CO2 partial pressure (PCO2) and the strong ion difference. Any measureable changes in CSF [HCO-3] and any change in [H+] that occur independent of changes in PCO2 must be accompanied by, if not caused by, changes in strong ions. The role of H+ and HCO-3 vs. strong ions in the ionic mechanisms of CSF acid-base regulation is unknown. For example, these mechanisms could depend only on changes in strong ions that accompany acid-base disorders, or they could be triggered by changes in [H+] or PCO2. These ideas are presented within the context of current concepts concerning the relationship of CSF to brain interstitial fluid (ISF) and the importance of choroid plexus and blood-brain barrier mechanisms in determining CSF and ISF ionic composition. Studies concerning CSF strong ions in normal and abnormal acid-base states are reviewed.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0206-0217 ◽  
Author(s):  
Seyedeh-Elaheh Shariati-Bafghi ◽  
Elaheh Nosrat-Mirshekarlou ◽  
Mohsen Karamati ◽  
Bahram Rashidkhani

Findings of studies on the link between dietary acid-base balance and bone mass are relatively mixed. We examined the association between dietary acid-base balance and bone mineral density (BMD) in a sample of Iranian women, hypothesizing that a higher dietary acidity would be inversely associated with BMD, even when dietary calcium intake is adequate. In this cross-sectional study, lumbar spine and femoral neck BMDs of 151 postmenopausal women aged 50 - 85 years were measured using dual-energy x-ray absorptiometry. Dietary intakes were assessed using a validated food frequency questionnaire. Renal net acid excretion (RNAE), an estimate of acid-base balance, was then calculated indirectly from the diet using the formulae of Remer (based on dietary intakes of protein, phosphorus, potassium, and magnesium; RNAERemer) and Frassetto (based on dietary intakes of protein and potassium; RNAEFrassetto), and was energy adjusted by the residual method. After adjusting for potential confounders, multivariable adjusted means of the lumbar spine BMD of women in the highest tertiles of RNAERemer and RNAEFrassetto were significantly lower than those in the lowest tertiles (for RNAERemer: mean difference -0.084 g/cm2; P=0.007 and for RNAEFrassetto: mean difference - 0.088 g/cm2; P=0.004). Similar results were observed in a subgroup analysis of subjects with dietary calcium intake of >800 mg/day. In conclusion, a higher RNAE (i. e. more dietary acidity), which is associated with greater intake of acid-generating foods and lower intake of alkali-generating foods, may be involved in deteriorating the bone health of postmenopausal Iranian women, even in the context of adequate dietary calcium intake.


Sign in / Sign up

Export Citation Format

Share Document