Quantization of non-abelian gauge theory. I. Gauge invariant Hamiltonian formulation

1981 ◽  
Vol 134 (1) ◽  
pp. 186-217 ◽  
Author(s):  
C Cronström
2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3621-3640
Author(s):  
M. S. KARNEVSKIY ◽  
S. A. PASTON

Feynman perturbation theory for non-Abelian gauge theory in light-like gauge is investigated. A lattice along two spacelike directions is used as a gauge invariant ultraviolet regularization. For preservation of the polynomiality of action, we use as independent variables arbitrary (nonunitary) matrices related to the link of the lattice. The action of the theory is selected in such a way to preserve as much as possible the rotational invariance, which remains after an introduction of the lattice, as well as to make superfluous degrees of freedom vanish in the limit of removing the regularization. Feynman perturbation theory is constructed and diagrams which does not contain ultraviolet divergences are analyzed. The scheme of renormalization of this theory is discussed.


2002 ◽  
Vol 17 (03) ◽  
pp. 383-393 ◽  
Author(s):  
ANDREAS GUSTAVSSON

We use holomorphic factorization to find the partition functions of an Abelian two-form chiral gauge-field on a flat six-torus. We prove that exactly one of these partition functions is modular invariant. It turns out to be the one that previously has been found in a Hamiltonian formulation.


1978 ◽  
Vol 17 (2) ◽  
pp. 585-597 ◽  
Author(s):  
J. B. Bronzan ◽  
R. L. Sugar

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Tomohiro Furukawa ◽  
Keiichi Ishibashi ◽  
H. Itoyama ◽  
Satoshi Kambayashi

2018 ◽  
Vol 33 (30) ◽  
pp. 1850182
Author(s):  
Mu Yi Chen ◽  
Su-Long Nyeo

The Hamiltonian of a nonrelativistic particle coupled to non-Abelian gauge fields is defined to construct a non-Abelian gauge theory. The Hamiltonian which includes isospin as a dynamical variable dictates the dynamics of the particle and isospin according to the Poisson bracket that incorporates the Lie algebraic structure of isospin. The generalized Poisson bracket allows us to derive Wong’s equations, which describe the dynamics of isospin, and the homogeneous (sourceless) equations for non-Abelian gauge fields by following Feynman’s proof of the homogeneous Maxwell equations.It is shown that the derivation of the homogeneous equations for non-Abelian gauge fields using the generalized Poisson bracket does not require that Wong’s equations be defined in the time-axial gauge, which was used with the commutation relation. The homogeneous equations derived by using the commutation relation are not Galilean and Lorentz invariant. However, by using the generalized Poisson bracket, it can be shown that the homogeneous equations are not only Galilean and Lorentz invariant but also gauge independent. In addition, the quantum ordering ambiguity that arises from using the commutation relation can be avoided when using the Poisson bracket.From the homogeneous equations, which define the “electric field” and “magnetic field” in terms of non-Abelian gauge fields, we construct the gauge and Lorentz invariant Lagrangian density and derive the inhomogeneous equations that describe the interaction of non-Abelian gauge fields with a particle.


Sign in / Sign up

Export Citation Format

Share Document