Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris) and amaranthus (Amaranthus lividus) leaves

1990 ◽  
Vol 276 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Grattan Roughan ◽  
Ikuo Nishida
1981 ◽  
Vol 199 (1) ◽  
pp. 221-226 ◽  
Author(s):  
J Sanchez ◽  
J L Harwood

The synthesis of lipids and acyl thioesters was studied in microsomal preparations from germinating pea (Pisum sativum cv. Feltham First) seeds. Under conditions of maximal synthesis (in the presence of exogenous acyl-carrier protein) acyl-acyl-carrier proteins accounted for about half the total incorporation from [14C]malonyl-CoA. Decreasing the concentrations of exogenous acyl-carrier protein lowered the overall synthesis of fatty acids by decreasing, almost exclusively, the radioactivity associated with acyl-acyl-carrier proteins. A time-course experiment showed that acyl-acyl-carrier proteins accumulated most of the radioactive label at the beginning of the incubation but, eventually, the amount of radioactivity in that fraction decreased, while a simultaneous increase in the acyl-CoA and lipid fractions was noticed. Addition of exogenous CoA (1 mM) produced a decrease of total incorporation, but an increase in the radioactivity incorporated into acyl-CoA. The microsomal preparations synthesized saturated fatty acids up to C20, including significant proportions of pentadecanoic acid and heptadecanoic acid. Synthesis of these ‘odd-chain’ fatty acids only took place in the microsomal fraction. In contrast, when the 18,000g supernatant (containing the microsomal and soluble fractions) was incubated with [14C]malonyl-CoA, the radioactive fatty acid and acyl classes closely resembled the patterns produced by germinating in the presence of [14C]acetate in vivo. The results are discussed in relation to the role of acyl thioesters in the biosynthesis of plant lipids.


2000 ◽  
Vol 348 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Philip E. JOHNSON ◽  
Simon R. FOX ◽  
Matthew J. HILLS ◽  
Stephen RAWSTHORNE

The effects of long-chain acyl-CoA (lcACoA) esters (both added exogenously and synthesized de novo) and acyl-CoA binding protein (ACBP) on plastidial glucose 6-phosphate (Glc6P) and pyruvate metabolism were examined using isolated plastids. The binding of lcACoA esters by ACBP stimulated the utilization of Glc6P for fatty acid synthesis, starch synthesis and reductant supply via the oxidative pentose phosphate (OPP) pathway. Stimulation occurred at low (1-10 μM) concentrations of ACBP. Pyruvate-dependent fatty acid synthesis was not directly affected by ACBP. However, addition of ACBP did increase the Glc6P-dependent stimulation of pyruvate utilization mediated through the OPP pathway. On the basis of these experiments, we conclude that lcACoA esters may inhibit Glc6P uptake into plastids, and that this inhibition is relieved by ACBP. We also suggest that utilization of other substrates for fatty acid synthesis may be affected by lcACoA/ACBP via their effects on the OPP pathway.


1970 ◽  
Vol 119 (2) ◽  
pp. 193-219 ◽  
Author(s):  
E. D. Saggerson ◽  
A. L. Greenbaum

1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2′-O-dibutyryl 3′:5′-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [14C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of 14C in various products after 2h of incubation. Fluxes of [14C]acetate, [14C]pyruvate or [14C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolase×triose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD+]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the `malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.


2019 ◽  
Vol 132 (1) ◽  
pp. 131-143 ◽  
Author(s):  
Minoru Nagano ◽  
Chikako Kakuta ◽  
Yoichiro Fukao ◽  
Masayuki Fujiwara ◽  
Hirofumi Uchimiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document