Preparation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by means of column chromatography with diethylaminoethylcellulose

1978 ◽  
Vol 501 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Naoki Sato ◽  
Norio Murata
1979 ◽  
Vol 52 (8) ◽  
pp. 2383-2385 ◽  
Author(s):  
Masahiko Yoshiura ◽  
Keiji Iriyama ◽  
Masaru Shiraki ◽  
Akira Okada

1973 ◽  
Vol 37 ◽  
Author(s):  
N. Lust

Pigment content of ashes grown up under different circumstances - The pigment content (chlorophyll a, chlorophyll b,  xanthophyll and carotene) has been researched with ashes grown up under  different light circumstances and varying in age and height.     The results prove that the general laws concerning the influence of light  on the pigment content, don’t always work.     The phenomen is very complex. The light quantity is very important in some  cases, but insignificant in others. It seems origin and height of plants have  a strong influence. The results prove also the influence of the environment  is much higher on small plants as on big ones.     The research indicates finally the correlation between the green pigments,  the yellow pigments, and between the green pigments on the one side and the  yellow ones on the other side.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Fairuz Fatini Mohd Yusof ◽  
Jamilah Syafawati Yaacob ◽  
Normaniza Osman ◽  
Mohd Hafiz Ibrahim ◽  
Wan Abd Al Qadr Imad Wan-Mohtar ◽  
...  

The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m−2 s−1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks’ exposure.


Sign in / Sign up

Export Citation Format

Share Document