ChemInform Abstract: ONE-ELECTRON OXIDATION OF PHOTOSYNTHETIC PIGMENTS IN MICELLES. BACTERIOCHLOROPHYLL A, CHLOROPHYLL A, CHLOROPHYLL B, AND PHEOPHYTIN A

1982 ◽  
Vol 13 (8) ◽  
Author(s):  
J.-P. CHAUVET ◽  
R. VIOVY ◽  
R. SANTUS ◽  
E. J. LAND
1979 ◽  
Vol 34 (7-8) ◽  
pp. 582-587
Author(s):  
Framçoise Techy ◽  
Monique Dinant ◽  
Jacques Aghion

Abstract The spectroscopic (visible) properties of pigment-bearing lipid and protein particles extract­ ed from milk show that: 1) chlorophylls a and b bound to separate particles can form aggregates provided their relative concentration is high enough. Neither pheophytin a nor β-carotene, in the same conditions, form observable aggregates. 2) Chlorophylls a and b can co-aggregate when they are bound to the same particles. Pheophytin a as well as β-carotene seem to prevent the aggregation of chlorophyll a. β-carotene has no effect on the aggregation of chlorophyll b.


2019 ◽  
Vol 52 (1) ◽  
pp. 74-78
Author(s):  
S. Buhăianu ◽  
Doina Carmen Jităreanu

Abstract Chlorophylls from plants are photosynthetic pigments. Their quantity offers valuable informations about photosynthetic activity, growing and developing of plants. Photosynthetic pigments decrease quantitatively during senescence process or in stress conditions. The present study has been realized in laboratory conditions with material harvested from spontaneous flora. The purpose of this research was the investigation of variations of chlorophyll content from samples of biological material collected from Nepeta pannonica L. and Abies alba Mill. plants, from Câmpulung Moldovenesc and Cacica areas, Suceava county, Romania. The targeted phenophases were growth and flowering. There were realized acetonic extracts from samples for spectrophotometric determinations. Obtained data were processed to estabilish chlorophyll a and b content. There were observed that at Abies alba species, from both locations, the chlorophyll a content grew during flowering phenophase, while the chlorophyll b content had little variations. At Nepeta pannonica species, the chlorophyll a and b content decreased visibly during the flowering, due to stress. Leaves of plants from this species presented a intense green color in the growing phenophase, while during flowering phenophase they had a purple or yellow coloration. Obtained results revealed a different dynamics of chlorophyll content at studied species.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 185-194 ◽  
Author(s):  
Verena Scheumann ◽  
Michael Helfrich ◽  
Siegrid Schoch ◽  
Wolfhart Rüdiger

Abstract The chemical reduction of the formyl group of pheophorbide b with sodium cyanoborohy­ dride in methanol leads to 71-methoxy-and 71-hydroxy-pheophorbide a. The same reaction with zinc pheophorbide b yields in addition zinc pheophorbide a. This was characterized by mass and 1H -NMR spectroscopy. Infiltration of zinc pheophorbides a and b and of zinc 71-hydroxy-pheophorbide a into etiolated oat leaves yielded phytylated products. The best yield in the esterification was obtained with 71-hydroxy-pheophorbide a. Analysis of the products revealed the formation of zinc pheophytin a from all infiltrated compounds. The significance for the transformation of chlorophyll b into chlorophyll a is discussed.


2020 ◽  
Vol 5 (2) ◽  
pp. 8-13
Author(s):  
Aleksei Bakunov ◽  
Aleksei Milekhin ◽  
Sergei Rubtsov ◽  
Sergei Shevchenko

The aim of the research is increasing potato yield in dry conditions of the Middle Volga region. The research was carried out on the experimental field of the Samara Scientific Research Institute of Agriculture – branch of the Sa-mara Research Center of the Russian Academy of Sciences. The variety testing plant nursery included 28 varieties of potatoes of domestic selection. Udacha, Zhigulevsky, Arosa and Gala breeds were the standard varieties. The plant material was planted out in two replications with 25 plants in each. To determine the content of photosynthetic pigments, extracts were prepared from ten potato leaves of each breed in 100% acetone. Measurements were per-formed by spectrophotometry. To measure the amount of chlorophyll a, the wavelength of 665 nm, chlorophyll b – 649 nm, and carotenoids – 440 nm were used. The concentration of pigments was determined by using Wettstein formulas. When harvesting, the potato yield was taken into account. The average concentration of chlorophyll a in the studied breeds was 0.92 mg/g, the average concentration of chlorophyll b was 0.62 mg/g, and one of carote-noids was 0.27 mg/g. Potato breeds with high concentration of photosynthetic pigments were identified. A reliable average dependence of the yield of potato breeds on the concentration of chlorophyll b in plants was revealed. The correlation coefficient was 0.42. There is no reliable dependence tested of yield on the concentration of chlorophyll a and carotenoids. Potato productivity is associated with a significant negative relationship with the ratio of both a and b chlorophyll concentrations. The most highly productive varieties were characterized by a high content of two varieties of chlorophyll. A high concentration of chlorophyll b or a minimum ratio of chlorophyll a and b concentra-tions can be tentatively recommended as a consequential sign for identifying potato breeds that are highly adapted to high air temperature and insufficient moisture.


2021 ◽  
Vol 25 (9) ◽  
pp. 1575-1580
Author(s):  
S. Abdulsalam ◽  
M.K. Yahaya ◽  
L.O. Habib ◽  
N.O. Ugbenyo

The effects of Na2EDTA and HNO3 on Ni2+ uptake by Spinacia oleracea seedlings replanted inhydroponic culture in a greenhouse was investigated. Eight week old seedlings, were exposed to various doses of Ni2+ (0, 1000, 2000, and 4000 mg/L) as NiSO4, at (0, 500 and 3000 mg/L) Na2EDTA and ( 0, 500 and 3000 mg /L) HNO3 in different combinations. There was a substantial increase in nickel uptake in chelated treatments (p < 0.05) compared to unchelated treatments of same concentrations of Ni2+. So, chelation enhanced Ni2+ uptake in S. oleracea. During the exposure, antioxidant defense system helped the plant to protect itself from the damage. Due to increasing nickel  uptake by the plant, the photosynthetic pigments (i.e chlorophyll a, chlorophyll b and Caretenoids) gradually declined. In this study, Spinacia oleracea Seedlings and contents of the photosynthetic pigments (chlorophyll a, chlorophyll b and Caretenoids) of both chelated and unchelated hydroponic treatments were investigated. Changes in photosynthetic pigments was significant (p < 0.05) with respect to addition of EDTA and HNO3 at different concentration to different concentrations of Ni2+ compared to unchelated treatments of same concentrations of Ni2+. The Ni2+ induced translocation factor was also determined which increased significantly (P < 0.05) with increasing Ni2+ concentrations.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 46
Author(s):  
Paweł Kondzior ◽  
Damian Tyniecki ◽  
Andrzej Butarewicz

The purpose of this paper is to determine the influence of color temperature of Light Emitting Diode (LED) diodes and illumination intensity on the content of photosynthetic pigments of chlorophyll a, chlorophyll b and carotenoids in Chlorella vulgaris algae cells. Choosing the right color temperature and intensity of illumination can favorably affect the growth of algae. In particular, it can contribute to the efficiency of the photosynthesis process and the amount of produced biomass from Chlorella vulgaris algae. In the spectrophotometric studies, the highest content of chlorophyll a, chlorophyll b and carotenoids was found in cultures illuminated with very cold white light (8500 K) with an intensity of 500 μmol/m2s. The highest measured content of chlorophyll a (Chl a) pigments was 48.29 mg/L, Chl b pigment was 23.25 mg/L and carotenoids pigment was 12.65 mg/L; the smallest content of pigments for Chl a (11.48 mg/L), Chl b (4.69 mg/L) and carotenoids (3.03 mg/L) was found in the sample illuminated with warm white light (3200 K) with an intensity of 50 μmol/m2s. The highest amount of dry organic matter amounting to 2.0 g/L was found in a sample illuminated with warm white light (3200 K) with an intensity of 250 μmol/m2s, then 1.91 g dry organic mass (DOM)/L for very cold white light with an intensity of 250 μmol/m2s, and 1.48 g DOM/L for very cold white light with an intensity of 50 μmol/m2s. The obtained results show that a higher content of photosynthetic pigments does not directly affect the increase of the amount of dry organic matter.


2014 ◽  
Vol 26 (3) ◽  
pp. 268-277 ◽  
Author(s):  
Andresa Lana Thomé Bizzo ◽  
Aline Chaves Intorne ◽  
Pollyana Honório Gomes ◽  
Marina Satika Suzuki ◽  
Bruno dos Santos Esteves

AIM: To evaluate, in a short-time exposure, the physiological responses of Salvinia auriculata Aubl. under different concentrations of Cu. METHODS: The plants were exposed to treatments with 0.01, 0.1, 1 and 10 mM of Cu in a period of 2 days. Then development variables of S. auriculata (weight, photosynthetic pigments, and soluble carbohydrate), lipid peroxidation (malondialdehyde, aldehydes, and electrolyte leakage) and production of antioxidants (anthocyanins, carotenoids, flavonoids, and proline) were evaluated. RESULTS: It was observed fresh weight reductions in concentrations above 1 mM of Cu. Chlorophyll a decreased with the increase of Cu concentrations unlike chlorophyll b. The ratio chlorophyll a / chlorophyll b was changed due to the degradation of photosynthetic pigments. The reductions of carotenoids were more pronounced than that of total chlorophyll. The values of electrolyte leakage ranged from 14 to 82 % and lipid peroxidation from 7 to 46 nmol.g-1. Flavonoids and soluble carbohydrates showed reductions with the increase of Cu concentration. Anthocyanins, phenolic compounds, and proline when subjected to 0.1 mM of Cu had increased, suggesting adaptability of plant stress caused directly by metal and reactive oxygen species. In higher concentrations, degradation and/or direct modifications of these molecules possibly occurred. CONCLUSIONS: The data suggest that S. auriculata is provided with an efficient mechanism against stress caused by Cu in the concentration of 0.1 mM. As for higher concentrations (1 and 10 mM), despite its role as micronutrients, Cu was toxic to the plant due to the redox behavior of this metal, which leads to the exacerbated formation of reactive oxygen species, inducing to severe damage such as biological membrane degradation and protein denaturation.


Sign in / Sign up

Export Citation Format

Share Document