Orientation of plgments in the thylakoid membrane and in the isolated chlorophyll-protein complexes of higher plants. IV. The 100 K linear dichroism spectra of thylakoids from wild-type and chlorophyll b-less barley thylakoids

1982 ◽  
Vol 682 (3) ◽  
pp. 504-506 ◽  
Author(s):  
Philip Haworth ◽  
Pierre Tapie ◽  
C.J. Arntzen ◽  
Jacques Breton
1983 ◽  
Vol 4 (4) ◽  
pp. 301-305 ◽  
Author(s):  
Wolfgang R�hle ◽  
Helmut Reil�nder ◽  
Klaus-Dieter Otto ◽  
Aloysius Wild

1983 ◽  
Vol 4 (1) ◽  
pp. 301-305 ◽  
Author(s):  
Wolfgang R�hle ◽  
Helmut Reil�nder ◽  
Klaus -Dieter Otto ◽  
Aloysius Wild

1985 ◽  
Vol 40 (1-2) ◽  
pp. 115-121 ◽  
Author(s):  
Peter Brandt ◽  
Helene Gleibs ◽  
Andrea Kohne ◽  
Wolfgang Wiessner

The seven chlorophyll-protein complexes CPIa, CPI, LHCP1, LHCP2, CPa, LHCP1 and LHCP11 known in part also from the chloroplasts of higher plants were isolated from Chlorella fusca. They were characterized by their molecular weight, their absorption maxima and their ratio of chlorophyll a/chlorophyll b. The composition of the chloropyhll-protein complexes changes during the cell cycle of Chlorella fusca. The ratio of LHCP/CPI decreases at the beginning of the light period and the ratio LHCP/CPa after the 2nd hour of the light period. Both quotients increase at the 5th hour of the light period, have a maximum at the 8th hour of the light period and decrease afterwards during the second part of the cell cycle. These altera­tions are no reflections of chlorophyll-accumulation, but cause modifications in the organization of the thylakoids and influence the photosynthetic efficiency of Chlorella fusca. The size of the PSI- and PSII-units during the cell cycle was estimated by these changes of the LHCP/CPI- and LHCP/CPa-ratios. In addition evidence is given that the assembly of LHCP1 and LHCP2 is no simple association of the monomeric forms of LHCPI or LHCPII.


1980 ◽  
Vol 35 (7-8) ◽  
pp. 627-637 ◽  
Author(s):  
Aloysius Wild ◽  
Barbara Urschel

Chlorophyll-protein complexes from thylakoids of the normal type and two mutants of Chlorella fusca were separated using sodium dodecyl sulfate acrylamide gel electrophoresis (PAGE). The properties of the chlorophyll-protein complexes of the three strains of Chlorella were compared. Standard curves were set up for the characterization of the chlorophyll-proteins. In every electrophoretic separation of chlorophyll-protein complexes, a certain amount of pigment is separated from the protein. We tried to keep that amount as low as possible by mild solubiliza­tion and by working in low temperature. Under these conditions, we obtained several new chlorophyll-proteins in addition to the P-700-chlorophyll a-protein (CP I) and the light-harvesting chlorophyll a/b-protein (CP II). Thus, a small band (CP I a) was located between the top of the gel and the CPI after elec­trophoresis. Although it shows spectral qualities similar to CP I, it possesses a much lower chloro­phyll a/chlorophyll b ratio. It may be an aggregate of photosystem I and light-harvesting chloro­phyll. We found and analyzed three other chlorophyll-proteins with electrophoretic mobilities inter­mediate between that of the P-700-chlorophyll a-protein and that of the light-harvesting chloro­phyll a/b-protein complex. Two of these chlorophyll-proteins, the LHCP1 and the LHCP2, have a low chlorophyll a/chlorophyll b ratio and spectral properties similar to that of the light-harvesting chlorophyll a/b-protein (LHCP3). They obviously represent dimers or oligomers of the latter com­plex. A third, new complex (CPa) migrated between LHCP3 and its dimer. With the chlorophyll b deficient mutant G 36 of Chlorella fusca, this complex could be obtained in high purity and great enrichment (15% of total chlorophyll). It could be proved that this complex only contains chloro­phyll a. Its red absorption maximum is at 671 nm. Some indirect evidences suggest that it may be a good candidate for the PS II reaction center complex.


Sign in / Sign up

Export Citation Format

Share Document