pigment protein complexes
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 31)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Xin Liu ◽  
Wojciech J Nawrocki ◽  
Roberta Croce

Non-photochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ was abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 was shown to be a pH sensor and switching to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combine biochemical and physiological measurements to study short-term high light acclimation of npq5, the mutant lacking LHCBM1. We show that while in low light in the absence of this complex, the antenna size of PSII is smaller than in its presence, this effect is marginal in high light, implying that a reduction of the antenna is not responsible for the low NPQ. We also show that the mutant expresses LHCSR3 at the WT level in high light, indicating that the absence of this complex is also not the reason. Finally, NPQ remains low in the mutant even when the pH is artificially lowered to values that can switch LHCSR3 to the quenched conformation. It is concluded that both LHCSR3 and LHCBM1 need to be present for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.


Author(s):  
Christian Friedl ◽  
Dmitri G. Fedorov ◽  
Thomas Renger

A structure-based quantitative calculation of excitonic couplings between photosynthetic pigments has to describe the dynamical polarization of the protein/solvent environment of the pigments, giving rise to reaction field and screening...


2021 ◽  
Vol 2090 (1) ◽  
pp. 012028
Author(s):  
Denis D Chesalin ◽  
Roman Y Pishchalnikov

Abstract Photosynthetic pigment-protein complexes are the essential parts of thylakoid membranes of higher plants and cyanobacteria. Besides many organic and inorganic molecules they contain pigments like chlorophyll, bacteriochlorophyll, and carotenoids, which absorb the incident light and transform it into the energy of the excited electronic states. The semiclassical theories such as molecular exciton theory and the multimode Brownian oscillator model allows us to simulate the linear and nonlinear optical response of any pigment-protein complex, however, the main disadvantage of those approaches is a significant amount of effective parameters needed to be found in order to reproduce the experimental data. To overcome these difficulties we used the Differential evolution method (DE) that belongs to the family of evolutionary optimization algorithms. Based on our preliminary studies of the linear optical properties of monomeric photosynthetic pigments using DE, we proceed to more complex systems like the reaction center of photosystem II isolated from higher plants (PSIIRC). PSIIRC contains only eight chlorophyll pigments, and therefore it is potentially a very promising subject to test DE as a powerful optimization procedure for simulation of the optical response of a system of interacting pigments. Using the theoretically simulated linear spectra of PSIIRC (absorption, circular dichroism, linear dichroism, and fluorescence), we investigated the dependence of the algorithm convergence on DE settings: strategies, crossover, weighting factor; eventually finding the optimal mode of operation of the optimization procedure.


2021 ◽  
Author(s):  
Ingrid Guarnetti Prandi ◽  
Vladislav Sláma ◽  
Cristina Pecorilla ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, Light-Harvesting complex stress related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work we propose a structural model of LHCSR1 from the moss P. Patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses.


2021 ◽  
Author(s):  
K. Tani ◽  
R. Kanno ◽  
X.-C. Ji ◽  
M. Hall ◽  
L.-J. Yu ◽  
...  

We present a cryo-EM structure of the light-harvesting-reaction center (LH1-RC) core complex from purple phototrophic bacterium Rhodospirillum (Rsp.) rubrum at 2.76 Å resolution. The LH1 complex forms a closed, slightly elliptical ring structure with 16 αβ-polypeptides surrounding the RC. Our biochemical analysis detected rhodoquinone (RQ) molecules in the purified LH1-RC, and the cryo-EM density map specifically positions RQ at the QA site in the RC. The geranylgeraniol sidechains of bacteriochlorophyll (BChl) aG coordinated by LH1 β-polypeptides exhibit a highly homologous tail-up conformation that allows for interactions with the bacteriochlorin rings of nearby LH1 α-associated BChls aG. The structure also revealed key protein–protein interactions in both N- and C-terminal regions of the LH1 αβ-polypeptides, mainly within a face-to-face structural subunit. Our findings enable to evaluate past experimental and computational results obtained with this widely used organism and provide crucial information for more detailed exploration of light-energy conversion, quinone transport, and structure—function relationships in pigment-protein complexes.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Maksym Golub ◽  
Adrian Kölsch ◽  
Artem Feoktystov ◽  
Athina Zouni ◽  
Jörg Pieper

High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.


Author(s):  
Abhishek Sirohiwal ◽  
Dimitrios Pantazis

Photosynthetic pigment-protein complexes harvest solar energy with quantum efficiency. Protein scaffolds are known to tune the spectral properties of the embedded pigments mainly through a structured electrostatic environment. However, the...


Author(s):  
Daniel A. Gacek ◽  
Alexander Betke ◽  
Julia Nowak ◽  
Heiko Lokstein ◽  
Peter Jomo Walla

In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions in which are not fully understood, yet. However, certain excited states of Cars are...


Sign in / Sign up

Export Citation Format

Share Document