The influence of temperature and gamma-aminobutyric acid on benzodiazepine receptor subtypes in the hippocampus of the rat

1982 ◽  
Vol 106 (4) ◽  
pp. 1134-1140 ◽  
Author(s):  
Kelvin W. Gee ◽  
Frederick J. Ehlert ◽  
Henry I. Yamamura
2001 ◽  
Vol 204 (5) ◽  
pp. 887-896 ◽  
Author(s):  
C.L. Devlin

This review describes the various subtypes of gamma-aminobutyric acid (GABA) receptors found at the echinoderm neuromuscular junction (NMJ), based on pharmacological and physiological studies. The review focuses mainly on holothurian GABA receptors at the NMJ located between the radial nerve and longitudinal muscle of the body wall (LMBW) and compares them to GABA receptors described at other echinoderm NMJs. Since a primary action of GABA on the holothurian LMBW is to modulate contractile responses to the excitatory neurotransmitter, acetylcholine (ACh), the pharmacology of echinoderm nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors (mAChRs) is also addressed. GABA responses have been described in the asteroids, echinoids and holothuroids but not in the other echinoderm classes. Some actions of GABA on echinoderm muscle include regulation of basal tone and spontaneous rhythmic contractions and modulation of cholinergic responses. Both GABA A and B receptor subtypes are present at the echinoderm NMJ, a feature also common to the arthropods, molluscs and chordates. Echinoderm GABA A receptors may mediate the excitatory responses to GABA. The GABA A receptor antagonist bicuculline has a paradoxical effect on contractility, stimulating large protracted contractions of the LMBW. The GABA A agonist muscimol potentiates cholinergic contractions of the holothurian LMBW. Another population of GABA receptors is inhibitory and is sensitive to the GABA B agonist baclofen and GABA B antagonists phaclofen and 2-OH-saclofen. The pre- and/or postsynaptic location of the GABA A and B receptors is not currently known. The folded GABA analogue 4-cis-aminocrotonic acid has no effect on the contractility of the holothurian LMBW so GABA C receptors are probably lacking in this preparation. Pharmacological studies have shown that distinct nAChRs and mAChRs are colocalized in numerous echinoderm muscle preparations. Most recently, nAChR agonists were used to characterize pharmacologically receptors at the holothurian LMBW that bind ACh. Nicotinic AChRs with unique pharmacological profiles are localized both pre- and postsynaptically at this NMJ, where their physiological action is to enhance muscle tone. Muscarinic agonists also have excitatory actions on the LMBW but their action is to stimulate phasic, rhythmic contractions of the muscle. The location of mAChRs at the echinoderm NMJ, however, is unknown.Since most of the studies described in the present review have used whole-mount preparations consisting largely of a combination of muscle fibers, neurons and connective tissue, it is extremely difficult to determine pharmacologically the exact location of the various receptor subtypes. Additional electrophysiological studies on isolated neurons and muscle fibers are therefore required to clearly define extra-, pre- and/or postsynaptic sites for the receptor subtypes at the echinoderm NMJ.


2005 ◽  
Vol 102 (2) ◽  
pp. 346-352 ◽  
Author(s):  
Berthold Drexler ◽  
Claire L. Roether ◽  
Rachel Jurd ◽  
Uwe Rudolph ◽  
Bernd Antkowiak

Background Cortical networks generate diverse patterns of rhythmic activity. Theta oscillations (4-12 Hz) are commonly observed during spatial learning and working memory tasks. The authors ask how etomidate, acting predominantly via gamma-aminobutyric acid type A (GABAA) receptors containing beta2 or beta3 subunits, affects theta activity in vitro. Methods To characterize the effects of etomidate, the authors recorded action potential firing together with local field potentials in slice cultures prepared from the neocortex of the beta3(N265M) knock-in mutant and wild type mice. Actions of etomidate were studied at 0.2 microm, which is approximately 15% of the concentration causing immobility ( approximately 1.5 microm). Results In preparations derived from wild type and beta3(N265M) mutant mice, episodes of ongoing activity spontaneously occurred at a frequency of approximately 0.1 Hz and persisted for several seconds. Towards the end of these periods, synchronized oscillations in the theta band developed. These oscillations were significantly depressed in slices from beta3(N265M) mutant mice (P < 0.05). In this preparation etomidate acts almost exclusively via beta2 subunit containing GABAA receptors. In contrast, no depression was observed in slices from wild type mice, where etomidate potentiates both beta2- and beta3-containing GABAA receptors. Conclusions At concentrations assumed to cause sedation and amnesia, etomidate depresses theta oscillations via beta2-containing GABAA receptors but enhances these oscillations by acting on beta3 subunit containing receptors. This indicates that the overall effect of the anesthetic reflects a balance between enhancement and inhibition produced by different GABAA receptor subtypes.


Sign in / Sign up

Export Citation Format

Share Document