rhythmic contractions
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 1)

2020 ◽  
Vol 117 (42) ◽  
pp. 26429-26437
Author(s):  
Hua Wen ◽  
Kazumi Eckenstein ◽  
Vivien Weihrauch ◽  
Christian Stigloher ◽  
Paul Brehm

The escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses and has a large quantal content (Qc) and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C bend initiating escape and the 2°Mn conferring weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q-type calcium channels mediating transmitter release in 1°Mns and N-type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ∼15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.



2020 ◽  
Author(s):  
Philipp Fleig ◽  
Mirna Kramar ◽  
Michael Wilczek ◽  
Karen Alim

What is the origin of behavior? Although typically associated with a nervous system, simple life forms also show complex behavior – thus serving as a model to study how behaviors emerge. Among them, the slime mold Physarum polycephalum, growing as a single giant cell, is renowned for its sophisticated behavior. Here, we show how locomotion and morphological adaptation behavior emerge from self-organized patterns of rhythmic contractions of the actomyosin lining of the tubes making up the network-shaped organism. We quantify the spatio-temporal contraction dynamics by decomposing experimentally recorded contraction patterns into spatial contraction modes. Surprisingly, we find a continuous spectrum of modes, as opposed to few dominant modes. Over time, activation of modes along this continuous spectrum is highly dynamic, resulting in contraction patterns of varying regularity. We show that regular patterns are associated with stereotyped behavior by triggering a behavioral response with a food stimulus. Furthermore, we demonstrate that the continuous spectrum of modes and the existence of irregular contraction patterns persist in specimens with a morphology as simple as a single tube. Our data suggests that the continuous spectrum of modes allows for dynamic transitions between a plethora of specific behaviors with transitions marked by highly irregular contraction states. By mapping specific behaviors to states of active contractions, we provide the basis to understand behavior’s complexity as a function of biomechanical dynamics. This perspective will likely stimulate bio-inspired design of soft robots with a similarly rich behavioral repertoire as P. polycephalum.



2020 ◽  
Author(s):  
Hua Wen ◽  
Kazumi Eckenstein ◽  
Vivien Weihrauch ◽  
Christian Stigloher ◽  
Paul Brehm

AbstractThe escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses, has a large quantal content (Qc), and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C-bend initiating escape and the 2°Mn confers weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q type calcium channels mediating transmitter release in 1°Mns and N type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ~15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This novel blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.



2020 ◽  
Vol 117 (30) ◽  
pp. 17854-17863 ◽  
Author(s):  
Alexander Klimovich ◽  
Stefania Giacomello ◽  
Åsa Björklund ◽  
Louis Faure ◽  
Marketa Kaucka ◽  
...  

Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoanHydraby using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.





2019 ◽  
Author(s):  
Alexander Klimovich ◽  
Stefania Giacomello ◽  
Åsa Björklund ◽  
Louis Faure ◽  
Marketa Kaucka ◽  
...  

Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Functional experiments validated a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.



2019 ◽  
Vol 371 (2) ◽  
pp. 278-289 ◽  
Author(s):  
Amanda J. Stolarz ◽  
Mustafa Sarimollaoglu ◽  
John C. Marecki ◽  
Terry W. Fletcher ◽  
Ekaterina I. Galanzha ◽  
...  


2019 ◽  
Vol 7 (8) ◽  
pp. e14074 ◽  
Author(s):  
Anders L. Moeller ◽  
Vibeke E. Hjortdal ◽  
Donna M. B. Boedtkjer ◽  
Ebbe Boedtkjer


Sign in / Sign up

Export Citation Format

Share Document