The effect of beta-adrenoceptor blocking drugs on ‘ecto-ATPase’ activity of rat blood platelets

1982 ◽  
Vol 31 (19) ◽  
pp. 3122-3124 ◽  
Author(s):  
Peter Turčáni ◽  
Marian Turčáni ◽  
Daniel Bartko
1987 ◽  
Vol 58 (02) ◽  
pp. 786-789 ◽  
Author(s):  
O Behnke

SummaryAdhesion of rat blood platelets to native rat tail collagen fibrils was studied in the electron microscope under conditions that preserved collagen-associated proteoglycans (CAPG). The CAPG molecules were aligned in chain-like configurations that encircled the fibrils with a 65 nm period; they appeared to coat the fibrils completely and extended 60-100 nm away from the fibril. The initial platelet-fibril contact occurred between the platelet glycocalyx and the CAPG of the fibrils i.e. between two surfaces with net-negative charges. When close contact was established between the fibril surface proper and the platelet membrane, CAPG were not identified in the area of contact, and the collagen-platelet distance was reduced to a ~10-12 nm wide gap traversed by delicate links in register with fibril periodicities.


1986 ◽  
Vol 233 (3) ◽  
pp. 661-668 ◽  
Author(s):  
N Hack ◽  
M Croset ◽  
N Crawford

Membrane-bound Ca2+-ATPases are responsible for the energy-dependent transport of Ca2+ across membrane barriers against concentration gradients. Such enzymes have been identified in sarcoplasmic reticulum of muscle tissues and in non-muscle cells in both surface membranes and endoplasmic-reticulum-like intracellular membrane complexes. In a previous study using membrane fractionation by density-gradient and free-flow electrophoresis, we reported that the intracellular membranes of human blood platelets were a major storage site for Ca2+ and involved in maintaining low cytosol [Ca2+] in the unactivated cell. In the present report we demonstrated that the intracellular membranes also exhibit a high-affinity Ca2+-ATPase which appears to be kinetically associated with the Ca2+-sequestering process. We found that both the surface membrane and the intracellular membrane exhibited a basal Mg2+-ATPase activity, but Ca2+ activation of this enzyme was confined only to the intracellular membrane. Use of Ca2+-EGTA buffers to control the extravesicle [Ca2+] allowed a direct comparison of the Ca2+-ATPase and the Ca2+-uptake process over a Ca2+ range of 0.01 microM to 1.0 mM, and it was found that both properties were maximally expressed in the range of external [Ca2+] 1-50 microM, with concentrations greater than 100 microM showing substantial inhibition. Double-reciprocal plots for the Ca2+-ATPase activity and Ca2+ uptake gave apparent Km values for Ca2+ of 0.15 and 0.13 microM respectively. However, similar plots for ATP with the enzyme revealed a discontinuity (two affinity sites, with Km 20 and 145 microM), whereas plots for the Ca2+ uptake gave a single Km value for Ca2+, 1.1 microM. Phosphorylation studies during Ca2+ uptake using [gamma-32P]ATP revealed two components of 90 and 95 kDa phosphorylated at extravesicle [Ca2+] of 3 microM. The Ca2+-ATPase activity, Ca2+ uptake and phosphorylation were all almost completely inhibited in the presence of 500 microM-Ca2+. Similar studies using mixed membranes revealed four other phosphoproteins (50, 40, 20 and 18 kDa) formed in addition to the 90 and 95 kDa components. The findings are discussed in the context of platelet Ca2+ mobilization for function and the mechanisms whereby Ca2+ homoeostasis is controlled in the unactivated cell.


Life Sciences ◽  
1980 ◽  
Vol 27 (20) ◽  
pp. 1881-1888 ◽  
Author(s):  
James K.T. Wang ◽  
Takashi Taniguchi ◽  
Sydney Spector

1995 ◽  
Vol 312 (3) ◽  
pp. 733-737 ◽  
Author(s):  
F Mitidieri ◽  
L de Meis

The effects of ethanol on different sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCAs) were studied. In sarcoplasmic reticulum vesicles, ethanol concentrations varying from 5 to 20% promoted a progressive inhibition of Ca2+ uptake, enhancement of Ca2+ efflux, activation of the ATPase activity, increase of the enzyme phosphorylation by ATP and inhibition of enzyme phosphorylation by P1. The effects of ethanol on Ca2+ uptake and Ca2+ efflux were antagonized by Mg2+, P(i) and spermine. The increased efflux promoted by ethanol was antagonized by Ca2+ and thapsigargin. In brain and platelet vesicles a biphasic effect of ethanol was observed, so that activation occurred at low concentrations (5-10%) and inhibition at higher concentrations. The activation was not observed with the use of n-propanol and n-butanol. Different from the situation in sarcoplasmic reticulum, the decrease of the Ca2+ uptake in brain and platelet vesicles was associated with an inhibition of the ATPase activity. Mg2+ and P(i) antagonized the enhancement of Ca2+ efflux and the inhibition of Ca2+ uptake promoted by ethanol. However, thapsigargin and Ca2+ did not arrest the Ca2+ efflux promoted by ethanol in brain and platelet preparations. These results suggest that, in sarcoplasmic reticulum vesicles, ethanol uncouples the pump, promoting its activity as a Ca2+ channel. The SERCA isoform found in skeletal muscle has different properties from the isoforms found in brain and blood platelets.


1975 ◽  
Vol 150 (1) ◽  
pp. 129-132 ◽  
Author(s):  
A H Drummond ◽  
J L Gordon

5-Hydroxytryptamine changes the shape of rat blood platelets by combination with a cinanserin-sensitive receptor which is not associated with the active uptake of 5-hydroxytryptamine. Binding of 5-hydroxy[3H]tryptamine to platelets at 4°C demonstrates the presence of three saturable sites, and the highest-affinity site is apparently this 5-hydroxytryptamine receptor.


Sign in / Sign up

Export Citation Format

Share Document