Descending influences on receptive fields and activity of single units recorded in laminae 1, 2 and 3 of cat spinal cord

1980 ◽  
Vol 199 (2) ◽  
pp. 283-298 ◽  
Author(s):  
David Dubuisson ◽  
Patrick D. Wall
2006 ◽  
Vol 95 (6) ◽  
pp. 3343-3352 ◽  
Author(s):  
Bryan C. Hains ◽  
Carl Y. Saab ◽  
Stephen G. Waxman

We recently showed that spinal cord contusion injury (SCI) at the thoracic level induces pain-related behaviors and increased spontaneous discharges, hyperresponsiveness to innocuous and noxious peripheral stimuli, and enlarged receptive fields in neurons in the ventral posterolateral (VPL) nucleus of the thalamus. These changes are linked to the abnormal expression of Nav1.3, a rapidly repriming voltage-gated sodium channel. In this study, we examined the burst firing properties of VPL neurons after SCI. Adult male Sprague–Dawley rats underwent contusion SCI at the T9 level. Four weeks later, when Nav1.3 protein was upregulated within VPL neurons, extracellular unit recordings were made from VPL neurons in intact animals, those with SCI, and in SCI animals after receiving lumbar intrathecal injections of Nav1.3 antisense or mismatch oligodeoxynucleotides for 4 days. After SCI, VPL neurons with identifiable peripheral receptive fields showed rhythmic oscillatory burst firing with changes in discrete burst properties, and alternated among single-spike, burst, silent, and spindle wave firing modes. Nav1.3 antisense, but not mismatch, partially reversed alterations in burst firing after SCI. These results demonstrate several newly characterized changes in spontaneous burst firing properties of VPL neurons after SCI and suggest that abnormal expression of Nav1.3 contributes to these phenomena.


1975 ◽  
Vol 38 (4) ◽  
pp. 965-980 ◽  
Author(s):  
J. C. Eccles ◽  
T. Rantucci ◽  
P. Scheid ◽  
H. Taborikova

The somatotopic inputs into red nucleus (RN) neurons have been studied with special reference to their level of projection in the spinal cord. As inputs we employed either volleys in predominantly cutaneous nerves of forelimb and hindlimb or cutaneous mechanoreceptor discharges evoked by taps to footpads of forelimb and hindlimb. There has been physiological confirmation of the anatomical findings that RD neurons projecting to the lumbar cord are located in the ventrolateral zone of the pars magnocellularis, whereas in the dorsomedial zone are RN neurons with cervical but not lumbar projection. Somatotopically there was found to be a differentiation of input to RN neurons according as they projected to the lumbar or only to the cervical cord. This finding was presented in the form both of tables and of somatotopic maps. As expected, this discrimination was more restrictive for the more selective inputs from pad taps than for nerve inputs. Nevertheless, forelimb inputs often had a considerable excitatory and inhibitory action on lumbar-projecting RN neurons, and vice versa for cervical-projecting neurons. There were two notable somatotopic findings that suggest specificities of connectivities. First, despite the large convergence of IP neurons onto RN neurons (about 50-fold), the degree of somatotopic discrimination was about the same for interpositus and RN neurons with two testing procedures: between inputs from forelimb and hindlimb; and between inputs from pads on one foot. Second, although there was in the interpositus nucleus a considerable topographical admixture of neurons with dominant forelimb or hindlimb inputs, the axonal projections of these neurons were apparently unscrambled on the way to the target RN neurons, so as to deliver the somatotopic specificities observed for two classes of RN neurons; those projecting down the spinal cord beyond L2 level, and those projecting to C2 but not L2. Finally, there is a general discussion of motor control with reference to the pathway; pars intermedia of anterior lobe of cerebellum leads to interpositus nucleus leads to red nucleus leads to rubrospinal tract leads to spinal motoneurons.


2008 ◽  
Vol 99 (6) ◽  
pp. 3144-3150 ◽  
Author(s):  
Rachel A. Ingram ◽  
Maria Fitzgerald ◽  
Mark L. Baccei

The lower thresholds and increased excitability of dorsal horn neurons in the neonatal rat suggest that inhibitory processing is less efficient in the immature spinal cord. This is unlikely to be explained by an absence of functional GABAergic inhibition because antagonism of γ-aminobutyric acid (GABA) type A receptors augments neuronal firing in vivo from the first days of life. However, it is possible that more subtle deficits in GABAergic signaling exist in the neonate, such as decreased reliability of transmission or greater depression during repetitive stimulation, both of which could influence the relative excitability of the immature spinal cord. To address this issue we examined monosynaptic GABAergic inputs onto superficial dorsal horn neurons using whole cell patch-clamp recordings made in spinal cord slices at a range of postnatal ages (P3, P10, and P21). The amplitudes of evoked inhibitory postsynaptic currents (IPSCs) were significantly lower and showed greater variability in younger animals, suggesting a lower fidelity of GABAergic signaling at early postnatal ages. Paired-pulse ratios were similar throughout the postnatal period, whereas trains of stimuli (1, 5, 10, and 20 Hz) revealed frequency-dependent short-term depression (STD) of IPSCs at all ages. Although the magnitude of STD did not differ between ages, the recovery from depression was significantly slower at immature GABAergic synapses. These properties may affect the integration of synaptic inputs within developing superficial dorsal horn neurons and thus contribute to their larger receptive fields and enhanced afterdischarge.


2004 ◽  
Vol 115 (12) ◽  
pp. 2798-2810 ◽  
Author(s):  
Ole K. Andersen ◽  
Nanna B. Finnerup ◽  
Erika G. Spaich ◽  
Troels S. Jensen ◽  
Lars Arendt-Nielsen

1984 ◽  
Vol 52 (3) ◽  
pp. 449-458 ◽  
Author(s):  
A. R. Light ◽  
R. G. Durkovic

Single-unit recordings from 312 units of lamina I-VII of the lumbar spinal cord of unanesthetized, decerebrate, T8 spinal cats were used to determine the somatotopic and laminar organization of spinal neurons responding to cutaneous stimulation of the hindlimb. Properties of cells confined to different Rexed laminae (I-VII) were shown to differ in several respects, including responses to variations in stimulus intensity, receptive-field areas, spontaneous frequencies, and central delays. Spinal cord neurons with similarly localized cutaneous receptive fields were found to be organized in sagittally oriented rectangular columns. These columns were 7 to at least 20 mm long (rostral-caudal axis), 0.5-1.0 mm wide, and could encompass laminae I-VII in depth. Touch, pressure, and pinch were effective excitatory inputs into each column subserving a given receptive-field location. A map of the somatotopic organization of units in the horizontal plane is presented, which in general confirms previous reports and in particular deals with the organization of units with receptive fields on the plantar cushion and individual toes.


1990 ◽  
Vol 64 (4) ◽  
pp. 1134-1148 ◽  
Author(s):  
S. N. Currie ◽  
P. S. Stein

1. We demonstrated multisecond increases in the excitability of the rostral-scratch reflex in the turtle by electrically stimulating the shell at sites within the rostral-scratch receptive field. To examine the cellular mechanisms for these multisecond increases in scratch excitability, we recorded from single cutaneous afferents and sensory interneurons that responded to stimulation of the shell within the rostral-scratch receptive field. A single segment of the midbody spinal cord (D4, the 4th postcervical segment) was isolated in situ by transecting the spinal cord at the segment's anterior and posterior borders. The isolated segment was left attached to its peripheral nerve that innervates part of the rostral-scratch receptive field. A microsuction electrode (4-5 microns ID) was used to record extracellularly from the descending axons of cutaneous afferents and interneurons in the spinal white matter at the posterior end of the D4 segment. 2. The turtle shell is innervated by slowly and rapidly adapting cutaneous afferents. All cutaneous afferents responded to a single electrical stimulus to the shell with a single action potential. Maintained mechanical stimulation applied to the receptive field of some slowly adapting afferents produced several seconds of afterdischarge at stimulus offset. We refer to the cutaneous afferent afterdischarge caused by mechanical stimulation of the shell as "peripheral afterdischarge." 3. Within the D4 spinal segment there were some interneurons that responded to a brief mechanical stimulus within their receptive fields on the shell with short afterdischarge and others that responded with long afterdischarge. Short-afterdischarge interneurons responded to a single electrical pulse to a site in their receptive fields either with a brief train of action potentials or with a single action potential. Long-afterdischarge interneurons responded to a single electrical shell stimulus with up to 30 s of afterdischarge. Long-afterdischarge interneurons also exhibited strong temporal summation in response to a pair of electrical shell stimuli delivered up to several seconds apart. Because all cutaneous afferents responded to an electrical shell stimulus with a single action potential, we conclude that electrically evoked afterdischarge in interneurons was produced by neural mechanisms in the spinal cord; we refer to this type of afterdischarge as "central afterdischarge." 4. These results demonstrate that neural mechanisms for long-lasting excitability changes in response to cutaneous stimulation reside in a single segment of the spinal cord. Cutaneous interneurons with long afterdischarge may serve as cellular loci for multise


1986 ◽  
Vol 55 (1) ◽  
pp. 76-96 ◽  
Author(s):  
R. P. Yezierski ◽  
R. H. Schwartz

Recordings were made from 90 identified spinomesencephalic tract (SMT) cells in the lumbosacral spinal cord of cats anesthetized with alpha-chloralose and pentobarbital sodium. Recording sites were located in laminae I-VIII. Antidromic stimulation sites were located in different regions of the rostral and caudal midbrain including the periaqueductal gray, midbrain reticular formation, and the deep layers of the superior colliculus. Twelve SMT cells were antidromically activated from more than one midbrain level or from sites in the medial thalamus. The mean conduction velocity for the population of cells sampled was 45.2 +/- 21.4 m/s. Cells were categorized based on their responses to graded intensities of mechanical stimuli and the location of excitatory and/or inhibitory receptive fields. Four major categories of cells were encountered: wide dynamic range (WDR); high threshold (HT); deep/tap; and nonresponsive. WDR and HT cells had excitatory and/or inhibitory receptive fields restricted to the ipsilateral hindlimb or extending to other parts of the body including the tail, forelimbs, and face. Some cells had long afterdischarges following noxious stimulation, whereas others had high rates of background activity that was depressed by nonnoxious and noxious stimuli. Deep/tap cells received convergent input from muscle, joint, or visceral primary afferent fibers. The placement of mechanical lesions at different rostrocaudal levels of the cervical spinal cord provided information related to the spinal trajectory of SMT axons. Six axons were located contralateral to the recording electrode in the ventrolateral/medial or lateral funiculi while two were located in the ventrolateral funiculus of the ipsilateral spinal cord. Stimulation at sites used to antidromically activate SMT cells resulted in the inhibition of background and evoked responses for 22 of 25 cells tested. Inhibitory effects were observed on responses evoked by low/high intensity cutaneous stimuli and by the activation of joint or muscle primary afferent fibers. Based on the response and receptive-field properties of SMT cells it is suggested that the SMT may have an important role in somatosensory mechanisms, particularly those related to nociception.


Pain ◽  
1979 ◽  
Vol 7 (2) ◽  
pp. 209-210
Author(s):  
P. D. Wall ◽  
E. G. Merrill ◽  
T. L. Yaksh
Keyword(s):  

1996 ◽  
Vol 76 (1) ◽  
pp. 242-254 ◽  
Author(s):  
P. Wilson ◽  
P. D. Kitchener ◽  
P. J. Snow

1. The morphology and somatotopic organization of the spinal arborizations of identified A beta-hair follicle afferent fibers (HFAs) with receptive fields (RFs) on the digits have been investigated in the cat by the use of intraaxonal injection of the tracer n-(2 aminoethyl) biotinamide. 2. In three cats, the long-ranging projections of six HFAs were examined by selectively injecting afferents with RFs on digit 2, 4, or 5, directly over the digit 3 representation, and examining their collateral morphology in transverse sections of the spinal cord. The rostral and caudal boundaries of the digit 3 representation were determined by mapping the RFs of identified spinocervical tract (SCT) neurons. 3. In two more cats, three HFAs were injected at random rostrocaudal positions and their morphology was examined in parasagittal sections. In one animal (2 HFAs), the somatotopy of the digit representation was again determined by mapping the RFs of SCT neurons. In the remaining cat (1 HFA), the somatotopy of the dorsal horn was mapped from the RFs of unidentified dorsal horn neurons. 4. Hair follicle afferents emitted many more collaterals, over much greater rostrocaudal distances, than indicated by previous horseradish peroxidase studies, and all collaterals gave rise to synaptic boutons. 5. HFAs that have RFs confined to a small part of a digit give rise to bouton-bearing axonal branches throughout the entire rostrocaudal extent of the hindpaw representation.


Sign in / Sign up

Export Citation Format

Share Document