Valproate enhances inhibitory postsynaptic potentials in hippocampal neurons in vitro

1987 ◽  
Vol 435 (1-2) ◽  
pp. 213-219 ◽  
Author(s):  
Uli Preisendörfer ◽  
Marc L. Zeise ◽  
Manfred R. Klee
1988 ◽  
Vol 59 (1) ◽  
pp. 110-123 ◽  
Author(s):  
E. P. Christian ◽  
F. E. Dudek

1. Evidence for local excitatory synaptic connections in CA1 of the rat hippocampus was obtained by recording excitatory postsynaptic potentials (EPSPs) intracellularly from pyramidal cells during local microapplications of glutamate. 2. Experiments were performed in hippocampal slices cut parallel to (transverse slice) or perpendicular to (longitudinal slice) alvear fibers. In normal solutions, glutamate microdrops (10–20 mM, 10–20 micron diam) applied in CA1 within 400 micron of recorded cells sometimes increased the frequency of inhibitory postsynaptic potentials for 5–10 s in both transverse and longitudinal slices. Increases in EPSP frequency were also occasionally observed, but only in transverse slices. Tetrodotoxin (1 microgram/ml) blocked glutamate-induced increases in PSP frequency, thus indicating that they were not caused by subthreshold effects on presynaptic terminals. Increases in PSP frequency were interpreted to result from glutamate activation of hippocampal neurons with inhibitory and excitatory connections to recorded neurons. 3. In both slice orientations, local excitatory circuits were studied in more isolated conditions by surgically separating CA1 from CA3 (transverse slices) and by blocking GABAergic inhibitory synapses with picrotoxin (5–10 microM). Microdrops were systematically applied at 200 and 400 micron on each side of the recording site. Significant glutamate-induced increases in EPSP frequency were observed in neurons from both slice orientations to microdrops in at least one of the locations. This provided evidence that excitatory synapses are present in both transverse and longitudinal slices. 4. Substantial increases in EPSP frequency only occurred in neurons from longitudinal slices when glutamate was microapplied 200 micron or less from the recording site. In transverse slices, however, large increases in EPSP frequency were observed to glutamate microapplications at 200 or 400 micron. These data suggest that CA1 local excitatory connections project for longer distances in the transverse than in the longitudinal plane of section. 5. Increases in EPSP frequency, averaged across cells, did not differ significantly in the four microapplication sites in either transverse or longitudinal slices. Thus local excitation in CA1 does not appear to be asymmetrically arranged in the way suggested for CA3. 6. The densities of local excitatory circuits in CA1 versus CA3 were studied by quantitatively comparing glutamate-induced increases in EPSP frequency.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (1) ◽  
pp. 427-434 ◽  
Author(s):  
Gabriele Radnikow ◽  
Jutta Rohrbacher ◽  
Ulrich Misgeld

Radnikow, Gabriele, Jutta Rohrbacher, and Ulrich Misgeld. Heterogeneity in use-dependent depression of inhibitory postsynaptic potentials in the rat neostriatum in vitro. J. Neurophysiol. 77: 427–434, 1997. “Minimal stimulation” was applied to evoke responses in an “all-or-none” fashion in presumed medium spiny neurons of rat neostriatal slices in the presence of antagonists for glutamatergic excitation. For comparison, responses were evoked in the same cells by compound stimulation. Bicuculline (30 μM) blocked responses evoked by minimal stimulation, indicating that they were γ-aminobutyric acid-A (GABAA)-receptor-mediated inhibitory postsynaptic potentials (IPSPs), whereas responses evoked by compound stimulation were only reduced in amplitude. Likewise, R(−)baclofen (1–20 μM) blocked IPSPs evoked by minimal stimulation in all but one cell. On the contrary, responses evoked by compound stimulation were always reduced in amplitude but never blocked. Paired-pulse depression (PPD) of averaged responses to minimal and compound stimulation was observed at a stimulus interval of 300 ms. The GABAB receptor antagonist CGP55845A (0.5 μM) had no effect on PPD evoked by compound stimulation but abolished PPD evoked by minimal stimulation. In a second set of experiments, the two stimulation paradigms were used to evoke responses in neostriatal slices continuously bathed in R(−)baclofen (10–20 μM). In R(−)baclofen a strong PPD was evoked by minimal and by compound stimulation. The amplitude of the response to compound stimulation increased on application of CGP55845A (0.5 μM). At the same time, PPD evoked by compound stimulation decreased. On the contrary, IPSP amplitude and PPD evoked by minimal stimulation remained unchanged. We conclude that two types of GABAergic terminals exist in the rat neostriatum, only one of which is regulated by GABAB receptors. However, the other class of terminals, not regulated by GABAB receptors, displays a much more pronounced PPD.


2000 ◽  
Vol 83 (2) ◽  
pp. 879-887 ◽  
Author(s):  
Krešimir Krnjević ◽  
Yong-Tao Zhao

In previous experiments on excitatory synaptic transmission in CA1, temporary (10–20 min) replacement of glucose with 10 mM 2-deoxyglucose (2-DG) consistently caused a marked and very sustained potentiation (2-DG LTP). To find out whether 2-DG has a similar effect on inhibitory synapses, we recorded pharmacologically isolated mononosynaptic inhibitory postsynaptic potentials (IPSPs; under current clamp) and inhibitory postsynaptic currents (IPSCs; under voltage clamp); 2-DG was applied both in the presence and the absence of antagonists of N-methyl-d-aspartate (NMDA). In spite of sharply varied results (some neurons showing large potentiation, lasting for >1 h, and many little or none), overall there was a significant and similar potentiation of IPSP conductance, both for the early (at ≈30 ms) and later (at ≈140 ms) components of IPSPs or IPSCs: by 35.1 ± 10.25% (mean ± SE; for n = 24, P = 0.0023) and 36.5 ± 16.3% (for n = 19, P = 0.038), respectively. The similar potentiation of the early and late IPSP points to a presynaptic mechanism of LTP. Overall, the LTP was statistically significant only when 2-DG was applied in the absence of glutamate antagonists. Tetanic stimulations (in presence or absence of glutamate antagonists) only depressed IPSPs (by half). In conclusion, although smaller and more variable, 2-DG–induced LTP of inhibitory synapses appears to be broadly similar to the 2-DG–induced LTP of excitatory postsynaptic potentials previously observed in CA1.


2002 ◽  
Vol 87 (5) ◽  
pp. 2571-2576 ◽  
Author(s):  
Yousheng Shu ◽  
David A. McCormick

The thalamic reticular nucleus (nRt) provides an important inhibitory input to thalamic relay nuclei and is central in the generation of both normal and abnormal thalamocortical activities. Although local inhibitory interactions between these neurons may play an important role in controlling thalamocortical activities, the physiological features of this interaction have not been fully investigated. Here we sought to establish the nature of inhibitory interaction between nRt neurons with intracellular and extracellular recordings in slices of ferret nRt maintained in vitro. In many nRt neurons, intracellular recordings revealed spontaneous inhibitory postsynaptic potentials (IPSPs). In addition, the local excitation of nRt cells with glutamate led to the generation of IPSPs in the intracellularly recorded nRt neuron. These evoked IPSPs exhibited an average reversal potential of −72 mV and could be blocked by picrotoxin, a GABAA-receptor antagonist. These results indicate that nRt neurons interact locally through the activation of GABAA receptor-mediated inhibitory postsynaptic potentials. This lateral inhibition may play an important role in controlling the responsiveness of these cells to cortical and thalamic excitatory inputs in both normal and abnormal thalamocortical function.


Sign in / Sign up

Export Citation Format

Share Document