recording site
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Darcy A Diesburg ◽  
Jeremy DW Greenlee ◽  
Jan R Wessel

Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.


Author(s):  
Jie Xi ◽  
Hongkai Xu ◽  
Ying Zhu ◽  
Linjun Zhang ◽  
Hua Shu ◽  
...  

Purpose Although acquisition of Chinese lexical tones by second language (L2) learners has been intensively investigated, very few studies focused on categorical perception (CP) of lexical tones by highly proficient L2 learners. This study was designed to address this issue with behavioral and electrophysiological measures. Method Behavioral identification and auditory event-related potential (ERP) components for speech discrimination, including mismatch negativity (MMN), N2b, and P3b, were measured in 23 native Korean speakers who were highly proficient late L2 learners of Chinese. For the ERP measures, both passive and active listening tasks were administered to examine the automatic and attention-controlled discriminative responses to within- and across-category differences for carefully chosen stimuli from a lexical tone continuum. Results The behavioral task revealed native-like identification function of the tonal continuum. Correspondingly, the active oddball task demonstrated larger P3b amplitudes for the across-category than within-category deviants in the left recording site, indicating clear CP of lexical tones in the attentive condition. By contrast, similar MMN responses in the right recording site were elicited by both the across- and within-category deviants, indicating the absence of CP effect with automatic phonological processing of lexical tones at the pre-attentive stage even in L2 learners with high Chinese proficiency. Conclusion Although behavioral data showed clear evidence of categorical perception of lexical tones in proficient L2 learners, ERP measures from passive and active listening tasks demonstrated fine-grained sensitivity in terms of response polarity, latency, and laterality in revealing different aspects of auditory versus linguistic processing associated with speech decoding by means of largely implicit native language acquisition versus effortful explicit L2 learning.


2021 ◽  
Author(s):  
Soo Hyun Park ◽  
Kenji W Koyano ◽  
Brian E Russ ◽  
Elena N Waidmann ◽  
David B.T. McMahon ◽  
...  

During normal vision, our eyes provide the brain with a continuous stream of useful information about the world. How visually specialized areas of the cortex, such as face-selective patches, operate under natural modes of behavior is poorly understood. Here we report that, during the free viewing of videos, cohorts of face-selective neurons in the macaque cortex fractionate into distributed and parallel subnetworks that carry distinct information. We classified neurons into functional groups based on their video-driven coupling with fMRI time courses across the brain. Neurons from each group were distributed across multiple face patches but intermixed locally with other groups at each recording site. These findings challenge prevailing views about functional segregation in the cortex and underscore the importance of naturalistic paradigms for cognitive neuroscience.


2021 ◽  
Author(s):  
Lavinia J Austerschmidt ◽  
Nadine I Schottler ◽  
Alyssa M Miller ◽  
Mark D Baker

Abstract Normal optic nerve axons exhibit a temperature dependence, previously explained by a membrane potential hyperpolarization on warming. We now report that near infra-red (IR) laser light, delivered via a fibre optic light guide, also affects axonal membrane potential and threshold, at least partly through a photo-thermal effect. Application of light to optic nerve, at the recording site, gave rise to a local membrane potential hyperpolarization over a period of about a minute, and increased the size of the depolarizing after potential (DAP). Application near the site of electrical stimulation reversibly raised current-threshold, and the change in threshold recorded over minutes of irradiation was significantly increased by the application of the Ih blocker, ZD7288 (50 µM), indicating Ih limits the hyperpolarizing effect of light. Light application also had fast effects on nerve behaviour, increasing threshold without appreciable delay (within seconds), probably by a mechanism independent of Na+ channels and kinetically fast K+ channels, and hypothesized to be caused by reversible changes in myelin function.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 821
Author(s):  
Chenyin Feng ◽  
Christopher L. Frewin ◽  
Md Rubayat-E Tanjil ◽  
Richard Everly ◽  
Jay Bieber ◽  
...  

Carbon containing materials, such as graphene, carbon-nanotubes (CNT), and graphene oxide, have gained prominence as possible electrodes in implantable neural interfaces due to their excellent conductive properties. While carbon is a promising electrochemical interface, many fabrication processes are difficult to perform, leading to issues with large scale device production and overall repeatability. Here we demonstrate that carbon electrodes and traces constructed from pyrolyzed-photoresist-film (PPF) when combined with amorphous silicon carbide (a-SiC) insulation could be fabricated with repeatable processes which use tools easily available in most semiconductor facilities. Directly forming PPF on a-SiC simplified the fabrication process which eliminates noble metal evaporation/sputtering and lift-off processes on small features. PPF electrodes in oxygenated phosphate buffered solution at pH 7.4 demonstrated excellent electrochemical charge storage capacity (CSC) of 14.16 C/cm2, an impedance of 24.8 ± 0.4 kΩ, and phase angle of −35.9 ± 0.6° at 1 kHz with a 1.9 kµm2 recording site area.


2021 ◽  
Author(s):  
Victoria Peterson ◽  
Timon Merk ◽  
Alan Bush ◽  
Vadim Nikulin ◽  
Andrea A Kühn ◽  
...  

The application of machine learning to intracranial signal analysis has the potential to revolutionize deep brain stimulation (DBS) by personalizing therapy to dynamic brain states, specific to symptoms and behaviors. Machine learning methods can allow behavioral states to be decoded accurately from intracranial local field potentials to trigger an adaptive DBS (aDBS) system, closing the loop between patients' needs and stimulation patterns. Most decoding pipelines for aDBS are based on single channel frequency domain features, neglecting spatial information available in multichannel recordings. Such features are extracted either from DBS lead recordings in the subcortical target and/or from electrocorticography (ECoG). To optimize the simultaneous use of both types of signals, we developed a supervised online-compatible decoding pipeline based on multichannel and multiple recording site recordings. We applied this pipeline to data obtained from 11 patients with Parkinson's disease performing a hand movement task during DBS surgery targeting the subthalamic nucleus, in which in addition a research temporary ECoG electrode was placed. Spectral and spatial features were extracted using filter-bank analysis and spatial pattern decomposition. The learned spatio-spectral features were used to train a generalized linear model with sparse regularized regression. We found that movement decoding was successful using 100 ms time windows, epoch time that is well-suited for aDBS applications. In addition, when 9 out of 16 features were selected, decoding performance was improved up to 15% when the multiple recording site features were used as compared to the single recording site approach. The prediction value was inversely correlated with both the UPDRS score and the distance of the ECoG electrode position to the hand knob motor cortex. Further evaluation of the selected features revealed that ECoG signals contribute more to decoding performance than subthalamic signals. This novel application of spatial filters to decode movement from combined cortical and subcortical recordings is an important step toward the use of machine learning for the construction of intelligent aDBS systems.


2021 ◽  
Vol 5 ◽  
pp. 87
Author(s):  
Lee-Roy C. Witbooi ◽  
Ben Page ◽  
Richard D. Pitcher ◽  
Steve Innes

Background: Most adult cardiovascular disease begins in childhood. Given the burgeoning obesity pandemic in children worldwide, there is a need for precise and scalable surveillance methods to detect subclinical cardiovascular disease in children and adolescents. Early detection allows early intervention and intensified primary prevention strategies in affected individuals. Carotid-femoral pulse wave velocity (PWV) directly measures arterial wall stiffness, an early feature of atherosclerosis. Calculation of PWV in growing children requires an accurate estimation of the true distance travelled by the aorto-femoral pressure wave, using surface anatomy landmarks. However, a variety of methods are used to estimate this distance, and these have not previously been investigated in growing children and adolescents. We sought to investigate this by comparing true arterial path length measured on computerized tomography (CT) scans, with a variety of estimations based on surface anatomy landmarks. Methods: Arterial path lengths were measured using multi-planar reformation (MPR) imaging software. These measurements were then compared with the surface anatomy measurements obtained using the same MPR imaging software. The fidelity of a variety of arterial path length estimation methods was tested. Results: The surface anatomy distance between the suprasternal notch and the angle of the mandible (PWV recording site in the neck), should be adjusted using the formula y=4.791+(1.0534*x). This value subtracted from the unadjusted distance from the suprasternal notch to the umbilicus, through the mid-inguinal crease to the femoral PWV recording site, provides the simplest reliable approximation of true intraluminal distance travelled. Conclusions: There is high correlation between the surface anatomy distances and the arterial path lengths they represent; however, these are not equal. Most surface anatomy measurements require adjustment using the formulae that we have provided, to accurately estimate the true distance travelled by the pulse wave.


2021 ◽  
Author(s):  
Darcy A. Diesburg ◽  
Jeremy D. W. Greenlee ◽  
Jan R. Wessel

SummaryDominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, including the subthalamic nucleus (STN), thalamus, and sensorimotor cortices (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site depth-recordings from SMC and either STN or thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials and were followed within 50ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from all three sites) confirmed that β-bursts in STN precede thalamic β-bursts. This provides first empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.


Author(s):  
Tsuyoshi Nakajima ◽  
Hiroyuki Ohtsuka ◽  
Shun Irie ◽  
Shinya Suzuki ◽  
Ryohei ARIYASU ◽  
...  

Modulatory actions of inputs from the visual system to cervical interneurons (IN) for arm muscle control are poorly understood in humans. In the present study, we examined whether visual stimulation modulates the excitation of cervical IN systems mediating corticospinal tract (CST) inputs to biceps brachii (BB). Twenty-eight healthy volunteers were seated and electromyogram recordings from the BB were performed across six experiments, each with discrete objectives. A flash stimulator for visual stimulation (50-μs duration) was placed 60 cm from the participant's eye. The CST was stimulated with transcranial magnetic/electrical stimulation (TMS/TES, respectively) contralateral to the recording site. Visual stimulation with TMS/TES was randomly delivered during weak tonic BB contractions. Single TMS/TES-induced motor-evoked potentials (MEPs) were markedly enhanced from 60-100 ms after visual stimulation compared with the control condition. The MEPs were significantly increased by combining the electrical stimulation of the ulnar nerve at the wrist [7.5-12 ms of nerve stimulation (NERVE)/TMS interval] with and without visual stimulation compared to the algebraic summation of responses obtained with either TMS or NERVE. Interestingly, the combined stimulation -induced MEP facilitation was significantly increased after visual stimulation compared with the control. Single motor unit (MU) recording also revealed the further enhancement of combined stimulation effects on the firing probabilities of MU during visual stimulation, which was observed in the peaks of the peri-stimulus time histogram, 1-2 ms later than the onset latency. The present findings suggest that visual stimulation facilitates the oligosynaptic CST excitation of arm motoneurons mediated by the cervical IN system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richárd Fiáth ◽  
Domokos Meszéna ◽  
Zoltán Somogyvári ◽  
Mihály Boda ◽  
Péter Barthó ◽  
...  

AbstractMultisite, silicon-based probes are widely used tools to record the electrical activity of neuronal populations. Several physical features of these devices are designed to improve their recording performance. Here, our goal was to investigate whether the position of recording sites on the silicon shank might affect the quality of the recorded neural signal in acute experiments. Neural recordings obtained with five different types of high-density, single-shank, planar silicon probes from anesthetized rats were analyzed. Wideband data were filtered to extract spiking activity, then the amplitude distribution of samples and quantitative properties of the recorded brain activity (single unit yield, spike amplitude and isolation distance) were compared between sites located at different positions of the silicon shank, focusing particularly on edge and center sites. Edge sites outperformed center sites: for all five probe types there was a significant difference in the signal power computed from the amplitude distributions, and edge sites recorded significantly more large amplitude samples both in the positive and negative range. Although the single unit yield was similar between site positions, the difference in spike amplitudes was noticeable in the range corresponding to high-amplitude spikes. Furthermore, the advantage of edge sites slightly decreased with decreasing shank width. Our results might aid the design of novel neural implants in enhancing their recording performance by identifying more efficient recording site placements.


Sign in / Sign up

Export Citation Format

Share Document