Intrathecal 5-hydroxytryptamine and electrical stimulation of the nucleus raphe magnus in rats both reduce the antinociceptive potency of intrathecally administered noradrenaline

1988 ◽  
Vol 455 (2) ◽  
pp. 300-306 ◽  
Author(s):  
Andrea Clatworthy ◽  
J.H. Williams ◽  
S. Barasi
1992 ◽  
Vol 67 (4) ◽  
pp. 820-828 ◽  
Author(s):  
K. A. Follett ◽  
G. F. Gebhart

1. In pentobarbital sodium-anesthetized rats, we evaluated changes in cortical evoked potentials (EPs) associated with electrical and chemical stimulation of nucleus raphe magnus (NRM). A condition-test (C-T) paradigm was used. Cortical EPs were produced by test stimuli delivered to a hindpaw or the thalamic ventral posterior lateral nucleus (VPL; electrical stimulation), or by photic stimulation of the eyes or electrical stimulation of contralateral homotopical cortex (transcallosal EPs). These test stimuli were then preceded by electrical or chemical conditioning stimulation (CS) delivered to NRM through a stereotaxically implanted electrode or injection cannula, respectively. Effects of CS on EPs produced by the test stimuli were characterized. 2. Electrical CS preceding a test stimulus delivered to the foot reduced the amplitude of EPs at thresholds as low as 10-25 microA. The magnitude of EP reduction was dependent on CS intensity, frequency, and the C-T interval. Optimal parameters were trains of 10 pulses (400 Hz) delivered at a C-T interval of 5-10 ms. Injection of glutamate and lidocaine into NRM demonstrated that these effects were due to activation of NRM neurons and not to current spread to medial lemniscus (ML). NRM CS also reduced cortical EPs produced by test stimulation in VPL but did not alter EPs from visual stimulation or from electrical stimulation of contralateral homotopical cortex. 3. These findings suggest that NRM CS attenuates EPs by inhibiting thalamic or thalamocortical afferent activity. Because NRM CS affected all components of the cortical EPs, the effect appears to involve alteration of general sensory activity and is not nociception specific.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 53 (3) ◽  
pp. 773-785 ◽  
Author(s):  
C. D. Chapman ◽  
W. S. Ammons ◽  
R. D. Foreman

Background activity of spinoreticular tract neurons in the T1-T4 segments was on average inhibited 80% by electrical stimulation of nucleus raphe magnus. Nucleus raphe magnus stimulation inhibited responses of spinoreticular tract neurons to somatic input produced by touching the skin and hair (innocuous stimulus) or pinching the skin and muscle (noxious stimulus). Inhibition of responses to noxious and innocuous somatic inputs was not significantly different. Inhibition produced during nucleus raphe magnus stimulation was less effective when the activity of spinoreticular tract cells increased. This relationship was consistent for both background activity and responses to somatic noxious or innocuous input. Nucleus raphe magnus stimulation inhibited responses of spinoreticular tract neurons to visceral input produced by electrical stimulation of cardiopulmonary sympathetic afferent fibers. Responses to C-fiber sympathetic afferent fibers were more effectively inhibited than were responses to A-delta sympathetic afferent fibers. In conclusion, stimulation of the nucleus raphe magnus inhibits T1-T4 spinoreticular tract neuronal responses to visceral and somatic inputs. Since spinoreticular neurons project to the medullary reticular formation, activation of the nucleus raphe magnus could modulate affective-motivational behavior and cardiovascular adjustments that often occur during angina pectoris.


Sign in / Sign up

Export Citation Format

Share Document