Synaptic transmission and paired-pulse behaviour of CA1 pyramidal cells in hippocampal slices from a hibernator at low temperature: importance of ionic environment

1995 ◽  
Vol 689 (1) ◽  
pp. 9-20 ◽  
Author(s):  
P. Igelmund ◽  
U. Heinemann
1996 ◽  
Vol 76 (6) ◽  
pp. 4185-4189 ◽  
Author(s):  
J. C. Hirsch ◽  
O. Quesada ◽  
M. Esclapez ◽  
H. Gozlan ◽  
Y. Ben-Ari ◽  
...  

1. Graded N-methyl-D-aspartate receptor (NMDAR)-dependent epileptiform discharges were recorded from ex vivo hippocampal slices obtained from rats injected a week earlier with an intracerebroventricular dose of kainic acid. Intracellular recordings from pyramidal cells of the CA1 area showed that glutamate NMDAR actively participated in synaptic transmission, even at resting membrane potential. When NMDAR were pharmacologically isolated, graded burst discharges could still be evoked. 2. The oxidizing reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, 200 microM, 15 min) suppressed the late part of the epileptiform burst that did not recover after wash but could be reinstated by the reducing agent tris (2-carboxyethyl) phosphine (TCEP, 200 microM, 15 min) and again abolished with the NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV). 3. Pharmacologically isolated NMDAR-mediated responses were decreased by DTNB (56 +/- 10%, mean +/- SD, n = 6), an effect reversed by TCEP. 4. When only the fast glutamateric synaptic component was blocked, NMDA-dependent excitatory postsynaptic potentials (EPSPs) could be evoked despite the presence of underlying fast and slow inhibitory postsynaptic potentials (IPSPs). DTNB decreased EPSPs to 48 +/- 12% (n = 5) of control. 5. Since a decrease of the NMDAR-mediated response by +/- 50% is sufficient to suppress the late part of the burst, we suggest that epileptiform activity can be controlled by manipulation of the redox sites of NMDAR. Our observations raise the possibility of developing new anticonvulsant drugs that would spare alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-R (AMPAR)-mediated synaptic responses and decrease NMDAR-mediated synaptic transmission without blocking it completely.


2002 ◽  
Vol 87 (3) ◽  
pp. 1395-1403 ◽  
Author(s):  
Ayako M. Watabe ◽  
Holly J. Carlisle ◽  
Thomas J. O'Dell

Activation of metabotropic glutamate receptors (mGluRs) with the group I mGluR selective agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induces a long-term depression (LTD) of excitatory synaptic transmission in the CA1 region of the hippocampus. Here we investigated the potential roles of pre- and postsynaptic processes in the DHPG-induced LTD at excitatory synapses onto hippocampal pyramidal cells in the mouse hippocampus. Activation of mGluRs with DHPG, but not ACPD, induced LTD at both Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells and at associational/commissural fiber synapses onto CA3 pyramidal cells. DHPG-induced LTD was blocked when the G-protein inhibitor guanosine-5′- O-(2-thiodiphosphate) was selectively delivered into postsynaptic CA1 pyramidal cells via an intracellular recording electrode, suggesting that DHPG depresses synaptic transmission through a postsynaptic, GTP-dependent signaling pathway. The effects of DHPG were also strongly modulated, however, by experimental manipulations that altered presynaptic calcium influx. In these experiments, we found that elevating extracellular Ca2+ concentrations ([Ca2+]o) to 6 mM almost completely blocked the effects of DHPG, whereas lowering [Ca2+]o to 1 mM significantly enhanced the ability of DHPG to depress synaptic transmission. Enhancing Ca2+ influx by prolonging action potential duration with bath applications of the K+ channel blocker 4-aminopyridine (4-AP) also strongly reduced the effects of DHPG in the presence of normal [Ca2+]o (2 mM). Although these findings indicate that alterations in Ca2+-dependent signaling processes strongly regulate the effects of DHPG on synaptic transmission, they do not distinguish between potential pre- versus postsynaptic sites of action. We found, however, that while inhibiting both pre- and postsynaptic K+ channels with bath-applied 4-AP blocked the effects of DHPG; inhibition of postsynaptic K+channels alone with intracellular Cs+ and TEA had no effect on the ability of DHPG to inhibit synaptic transmission. This suggests that presynaptic changes in transmitter release contribute to the depression of synaptic transmission by DHPG. Consistent with this, DHPG induced a persistent depression of both AMPA and N-methyl-d-aspartate receptor-mediated components of excitatory postsynaptic currents in voltage-clamped pyramidal cells. Together our results suggest that activation of postsynaptic mGluRs suppresses transmission at excitatory synapses onto CA1 pyramidal cells through presynaptic effects on transmitter release.


2002 ◽  
Vol 87 (3) ◽  
pp. 1655-1658 ◽  
Author(s):  
Bret N. Smith ◽  
F. Edward Dudek

Axon sprouting and synaptic reorganization in the hippocampus are associated with the development of seizures in temporal lobe epilepsy. Synaptic interactions among CA1 pyramidal cells were examined in fragments of hippocampal slices containing only the CA1 area from saline- and kainate-treated rats. Glutamate microapplication to the pyramidal cell layer increased excitatory postsynaptic current (EPSC) frequency, but only in rats with kainate-induced epilepsy. In bicuculline, action potentials evoked in single pyramidal cells increased the frequency of network bursts only in slices from rats with kainate-induced epilepsy. These data further support the hypothesis that excitatory connections between CA1 pyramidal cells increase after kainate-induced status epilepticus.


2001 ◽  
Vol 85 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
T. C. Foster ◽  
T. C. Dumas

Exposure to novel environments or behavioral training is associated with increased strength at hippocampal synapses. The present study employed quantal analysis techniques to examine the mechanism supporting changes in synaptic transmission that occur following differential behavioral experience. Measures of CA1 synaptic strength were obtained from hippocampal slices of rats exposed to novel environments or maintained in individual cages. The input/output (I/O) curve of extracellularly recorded population excitatory postsynaptic potentials (EPSPs) increased for animals exposed to enrichment. The amplitude of the synaptic response of the field potential was related to the fiber potential amplitude and the paired-pulse ratio, however, these measures were not altered by differential experience. Estimates of biophysical parameters of transmission were determined for intracellularly recorded unitary responses of CA1 pyramidal cells. Enrichment was associated with an increase in the mean unitary synaptic response, an increase in quantal size, and a trend for decreased input resistance and reduction in the stimulation threshold to elicit a unitary response. Paired-pulse facilitation, the percent of response failures, coefficient of variance, and estimates of quantal content were not altered by experience but correlated well with the mean unitary response amplitude. The results suggest that baseline synaptic strength is determined, to a large extent, by presynaptic release mechanisms. However, increased synaptic transmission following environmental enrichment is likely due to an increase in the number or efficacy of receptors at some synapses and the emergence of functional synaptic contacts between previously unconnected CA3 and CA1 cells.


2010 ◽  
Vol 476 (2) ◽  
pp. 70-73 ◽  
Author(s):  
Rodion V. Kondratenko ◽  
Vladimir I. Derevyagin ◽  
Vladimir G. Skrebitsky

Sign in / Sign up

Export Citation Format

Share Document