network bursts
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 1)

Heliyon ◽  
2021 ◽  
pp. e08612
Author(s):  
Na Yu ◽  
Gurpreet Jagdev ◽  
Michelle Morgovsky

2021 ◽  
pp. 1-14
Author(s):  
Xiaowei Zhu ◽  
Yu Han ◽  
Shichong Li ◽  
Xinyin Wang

With the rapid growth of social network users, the social network has accumulated massive social network topics. However, due to the randomness of content, it becomes sparse and noisy, accompanied by many daily chats and meaningless topics, which brings challenges to bursty topics discovery. To deal with these problems, this paper proposes the spatial-temporal topic model with sparse prior and recurrent neural networks (RNN) prior for bursty topic discovering (ST-SRTM). The semantic relationship of words is learned through RNN to alleviate the sparsity. The spatial-temporal areas information is introduced to focus on bursty topics for further weakening the semantic sparsity of social network context. Besides, we introduced the “Spike and Slab” prior to decouple the sparseness and smoothness. Simultaneously, we realized the automatic discovery of social network bursts by introducing the burstiness of words as the prior and binary switching variables. We constructed multiple sets of comparative experiments to verify the performance of ST-SRTM by leveraging different evaluation indicators on real Sina Weibo data sets. The experimental results confirm the superiority of our ST-SRTM.


2021 ◽  
Author(s):  
Jugoslava Aćimović ◽  
Tuomo Mäki-Marttunen ◽  
Heidi Teppola ◽  
Marja-Leena Linne

Spontaneous network bursts, the intervals of intense network-wide activity interleaved with longer periods of sparse activity, are a hallmark phenomenon observed in cortical networks at postnatal developmental stages. Generation, propagation and termination of network bursts depend on a combination of synaptic, cellular and network mechanisms; however, the interplay between these mechanisms is not fully understood. We study this interplay in silico, using a new data-driven framework for generating spiking neuronal networks fitted to the microelectrode array recordings. We recorded the network bursting activity from rat postnatal cortical networks under several pharmacological conditions. In each condition, the function of specific excitatory and inhibitory synaptic receptors was reduced in order to examine their impact on global network dynamics. The obtained data was used to develop two complementary model fitting protocols for automatic model generation. These protocols allowed us to disentangle systematically the modeled cellular and synaptic mechanisms that affect the observed network bursts. We confirmed that the change in excitatory and inhibitory synaptic transmission in silico, consistent with pharmacological conditions, can account for the changes in network bursts relative to the control data. Reproducing the exact recorded network bursts statistics required adapting both the synaptic transmission and the cellular excitability separately for each pharmacological condition. Our results bring new understanding of the complex interplay between cellular, synaptic and network mechanisms supporting the burst dynamics. While here we focused on analysis of in vitro data, our approach can be applied ex vivo and in vivo given that the appropriate experimental data is available.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wenxi Xing ◽  
Ana Dolabela de Lima ◽  
Thomas Voigt

Neocortical networks have a characteristic constant ratio in the number of glutamatergic projection neurons (PN) and GABAergic interneurons (IN), and deviations in this ratio are often associated with developmental neuropathologies. Cultured networks with defined cellular content allowed us to ask if initial PN/IN ratios change the developmental population dynamics, and how different ratios impact the physiological excitatory/inhibitory (E/I) balance and the network activity development. During the first week in vitro, the IN content modulated PN numbers, increasing their proliferation in networks with higher IN proportions. The proportion of INs in each network set remained similar to the initial plating ratio during the 4 weeks cultivation period. Results from additional networks generated with more diverse cellular composition, including early-born GABA neurons, suggest that a GABA-dependent mechanism may decrease the survival of additional INs. A large variation of the PN/IN ratio did not change the balance between isolated spontaneous glutamatergic and GABAergic postsynaptic currents charge transfer (E/I balance) measured in PNs or INs. In contrast, the E/I balance of multisynaptic bursts reflected differences in IN content. Additionally, the spontaneous activity recorded by calcium imaging showed that higher IN ratios were associated with increased frequency of network bursts combined with a decrease of participating neurons per event. In the 4th week in vitro, bursting activity was stereotypically synchronized in networks with very few INs but was more desynchronized in networks with higher IN proportions. These results suggest that the E/I balance of isolated postsynaptic currents in single cells may be regulated independently of PN/IN proportions, but the network bursts E/I balance and the maturation of spontaneous network activity critically depends upon the structural PN/IN ratio.


2018 ◽  
Vol 12 ◽  
Author(s):  
Tanguy Fardet ◽  
Mathieu Ballandras ◽  
Samuel Bottani ◽  
Stéphane Métens ◽  
Pascal Monceau
Keyword(s):  

2017 ◽  
Author(s):  
Bryan M. Krause ◽  
Caitlin A. Murphy ◽  
Daniel J. Uhlrich ◽  
Matthew I. Banks

AbstractSpatio-temporal cortical activity patterns relative to both peripheral input and local network activity carry information about stimulus identity and context. GABAergic interneurons are reported to regulate spiking at millisecond precision in response to sensory stimulation and during gamma oscillations; their role in regulating spike timing during induced network bursts is unclear. We investigated this issue in murine auditory thalamo-cortical (TC) brain slices, in which TC afferents induced network bursts similar to previous reports in vivo. Spike timing relative to TC afferent stimulation during bursts was poor in pyramidal cells and SOM+ interneurons. It was more precise in PV+ interneurons, consistent with their reported contribution to spiking precision in pyramidal cells. Optogenetic suppression of PV+ cells unexpectedly improved afferent-locked spike timing in pyramidal cells. In contrast, our evidence suggests that PV+ cells do regulate the spatio-temporal spike pattern of pyramidal cells during network bursts, whose organization is suited to ensemble coding of stimulus information. Simulations showed that suppressing PV+ cells reduces the capacity of pyramidal cell networks to produce discriminable spike patterns. By dissociating temporal precision with respect to a stimulus versus internal cortical activity, we identified a novel role for GABAergic cells in regulating information processing in cortical networks.


2017 ◽  
Vol 114 (36) ◽  
pp. 9517-9522 ◽  
Author(s):  
Satohiro Tajima ◽  
Takeshi Mita ◽  
Douglas J. Bakkum ◽  
Hirokazu Takahashi ◽  
Taro Toyoizumi

Spontaneous, synchronous bursting of neural population is a widely observed phenomenon in nervous networks, which is considered important for functions and dysfunctions of the brain. However, how the global synchrony across a large number of neurons emerges from an initially nonbursting network state is not fully understood. In this study, we develop a state-space reconstruction method combined with high-resolution recordings of cultured neurons. This method extracts deterministic signatures of upcoming global bursts in “local” dynamics of individual neurons during nonbursting periods. We find that local information within a single-cell time series can compare with or even outperform the global mean-field activity for predicting future global bursts. Moreover, the intercell variability in the burst predictability is found to reflect the network structure realized in the nonbursting periods. These findings suggest that deterministic local dynamics can predict seemingly stochastic global events in self-organized networks, implying the potential applications of the present methodology to detecting locally concentrated early warnings of spontaneous seizure occurrence in the brain.


2017 ◽  
Vol 118 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Li-Rong Shao ◽  
Carl E. Stafstrom

Neuronal activity is energy demanding and coupled to cellular metabolism. In this study, we investigated the effects of glycolytic inhibition with 2-deoxy-d-glucose (2-DG) on basal membrane properties, spontaneous neuronal firing, and epileptiform network bursts in hippocampal slices. The effect of glycolytic inhibition on basal membrane properties was examined in hippocampal CA1 neurons, which are not ordinarily active spontaneously. Intracellular application of 2-DG did not significantly alter the membrane input resistance, action-potential threshold, firing pattern, or input-output relationship of these neurons compared with simultaneously recorded neighboring neurons without intracellular 2-DG. The effect of glycolytic inhibition on neuronal firing was tested in spontaneously active hippocampal neurons (CA3) when synaptic transmission was left intact or blocked with AMPA, NMDA, and GABAA receptor antagonists (DNQX, APV, and bicuculline, respectively). Under both conditions (synaptic activity intact or blocked), bath application of 2-DG (2 mM) blocked spontaneous firing in ~2/3 (67 and 71%, respectively) of CA3 pyramidal neurons. In contrast, neuronal firing of CA3 neurons persisted when 2-DG was applied intracellularly, suggesting that glycolytic inhibition of individual neurons is not sufficient to stop neuronal firing. The effects of 2-DG on epileptiform network bursts in area CA3 were tested in Mg2+-free medium containing 50 µM 4-aminopyridine. Bath application of 2-DG abolished these epileptiform bursts in a dose-dependent and all-or-none manner. Taken together, these data suggest that altered glucose metabolism profoundly affects cellular and network hyperexcitability and that glycolytic inhibition by 2-DG can effectively abrogate epileptiform activity. NEW & NOTEWORTHY Neuronal activity is highly energy demanding and coupled to cellular metabolism. In this study, we demonstrate that glycolytic inhibition with 2-deoxy-d-glucose (2-DG) effectively suppresses spontaneous neuronal firing and epileptiform bursts in hippocampal slices. These data suggest that an altered metabolic state can profoundly affect cellular and network excitability, and that the glycolytic inhibitor 2-DG may hold promise as a novel treatment of drug-resistant epilepsy.


2016 ◽  
Vol 113 (12) ◽  
pp. 3341-3346 ◽  
Author(s):  
Yaron Penn ◽  
Menahem Segal ◽  
Elisha Moses

Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron’s tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network’s activity and dynamics, contributing to our understanding of developing neural circuits.


Sign in / Sign up

Export Citation Format

Share Document