Analysis of heat and mass transfer between solid wall and fluid streams at both low and high reynolds numbers

1963 ◽  
Vol 18 (8) ◽  
pp. 560
Author(s):  
T.K. Sherwood
AIChE Journal ◽  
1967 ◽  
Vol 13 (4) ◽  
pp. 697-702 ◽  
Author(s):  
Takayuki Nate ◽  
D. M. Himmelblau

2015 ◽  
Author(s):  
Harish Gopalan ◽  
Dominic Denver John Chandar ◽  
Narasimha Rao Pillamarri ◽  
Guan Mengzhao ◽  
Rajeev K. Jaiman ◽  
...  

Investigation of flow past tandem and side-by-side circular and square columns is of interest in offshore engineering. Flow past fixed and vibrating circular columns has received a lot of focus in the literature. However, the studies focused on square columns, especially at high Reynolds numbers are very limited due to the computational cost of large eddy simulation (LES). Unsteady Reynolds-averaged Navier-Stokes (URANS) methods are limited by their accuracy, especially for tandem columns in the wake interference regime (spacing to diameter ratio: L=D ∼ 3:0). Hybrid URANS-LES models (URANS near the solid-wall and LES away from the wall) can overcome the drawbacks of the traditional URANS methods and can provide a reasonable prediction of the flow physics at a fraction of the cost of LES without significantly sacrificing numerical accuracy. Arbitrary Lagrangian-Eulerian (ALE) methods fails when vibrating tandem bodies are in close proximity to each other or vibrate at high reduced velocities. Remeshing the domain can be expensive, especially at high Reynolds numbers (Re). Alternate strategies are necessary to efficiently simulation this problems. This study proposes the use of a non-linear URANS-LES model, coupled with an overset mesh method (for vibrating columns), for studying flow past tandem square columns. Simulations are performed at sub-critical Re to match the experimental Re. The initial results are encouraging for further investigation of fixed and vibrating tandem square column flow interference at high Reynolds numbers.


Author(s):  
D. Ambesi ◽  
C. R. Kleijn

We study laminar forced convection mass transfer to single layer arrays of equidistantly and non-equidistantly spaced micro-spheres. We report average Sherwood numbers as a function of geometry and flow conditions, for open frontal area fractions between 0.04 and 0.95, Schmidt numbers between 0.7 and 10, and Reynolds numbers (based on micro-sphere diameter and the free stream velocity) between 0.1 and 100. For equidistantly spaced arrays of micro-spheres we propose a general analytical expression for the average Sherwood number as a function of the Reynolds number, Schmidt number and the open frontal area fraction, as well as asymptotic scaling rules for small and large Reynolds. For all studied Schmidt numbers, equidistant arrays exhibit decreasing average Sherwood numbers for decreasing open frontal area fractions at low Reynolds numbers. For high Reynolds numbers, the Sherwood number approaches that of a single spheres in cross-flow, independent of the open frontal area fraction. For equal open frontal area fractions, the Sherwood number in non-equidistant arrays is lower than in equidistant arrays for intermediate Reynolds numbers. For very low and high Reynolds numbers, non-uniformity does not influence mass transfer.


1998 ◽  
Vol 53 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Christian H.E. Nielsen ◽  
Søren Kiil ◽  
Henrik W. Thomsen ◽  
Kim Dam-Johansen

2007 ◽  
Vol 129 (9) ◽  
pp. 1134-1140 ◽  
Author(s):  
Gregory J. Michna ◽  
Anthony M. Jacobi ◽  
Rodney L. Burton

Thermal-hydraulic performance data for offset-strip fin arrays are readily available in the range Re<10,000. However, in emerging applications in automotive and aerospace systems, where fan power is not a constraint and compactness is important, it may be desirable to operate offset-strip fin heat exchangers at very high Reynolds numbers. In this paper, friction factor and mass transfer performance of an offset-strip fin array at Reynolds numbers between 10,000 and 120,000 are characterized. A scale-model, eight-column fin array is used in pressure drop and naphthalene sublimation experiments, and the data are compared to predictions of performance given by available analytical models and extrapolations of the best available correlations. The friction factor data follow the correlation-predicted trend of decreasing monotonically as the Reynolds number is increased to 20,000. However, at higher Reynolds numbers, the friction factor increases as the Reynolds number increases and local maxima are observed in the data. Over the range investigated, the modified Colburn j factor decreases monotonically as the Reynolds number increases. For Reynolds numbers in the range 10,000<Re<120,000, well beyond that covered by state-of-the-art correlations, both the friction factor and Colburn j factor are roughly twice that predicted by extrapolating the best available correlations. The higher-than-predicted Colburn j factor at very high Reynolds numbers is encouraging for the use of offset-strip fin heat exchangers in emerging applications where compactness is of high importance.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

Sign in / Sign up

Export Citation Format

Share Document