Radial heat transfer to fixed beds of particles

1987 ◽  
Vol 42 (9) ◽  
pp. 2163-2171 ◽  
Author(s):  
D.J. Gunn ◽  
M.M. Ahmad ◽  
M.N. Sabri
Keyword(s):  
2017 ◽  
Vol 119 ◽  
pp. 245-262 ◽  
Author(s):  
Felipe Suárez ◽  
Carlos D. Luzi ◽  
Néstor J. Mariani ◽  
Guillermo F. Barreto

2017 ◽  
Vol 317 ◽  
pp. 204-214 ◽  
Author(s):  
Ying Dong ◽  
Bahne Sosna ◽  
Oliver Korup ◽  
Frank Rosowski ◽  
Raimund Horn

Author(s):  
S. Manna ◽  
S. K. Ghosh ◽  
S. C. Haldar

Free convection from an upward facing radial heat sink with fins at an equal angular gap attached to an isothermal base has been investigated numerically. The governing equations in primitive variables were changed to vorticity-vector potential formulation, and an in-house code was developed using finite difference technique. To close the computational domain, two pseudo boundaries were considered. Length, height, and number of fins strongly influence the rate of heat transfer while the fin thickness has a marginal role. As the fin length increases, the rate of heat transfer first increases and then remains almost unaffected. However, the active length of the fins depends on the strength of buoyancy. Heat transfer continuously increases with fin height but with diminishing effect. Adding more number of fins has two opposing effects. It provides more surface area for convection, but at the same time, the induced air is unable to reach the interior of the heat sink making the inner portion of the fins inoperative. As a result of these two opposing influences, heat transfer increases in the beginning and then decreases as more fins are added. This article suggests various fin parameters to achieve maximum cooling. In addition, one can estimate the rate of cooling to be achieved by any radial heat sink.


2019 ◽  
Vol 128 ◽  
pp. 01003 ◽  
Author(s):  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
Marcin Sosnowski ◽  
Anna Zylka ◽  
Anna Kulakowska ◽  
...  

An innovative idea, shown in the paper constitutes in the use of the fluidized bed of sorbent, instead of the conventional, fixed-bed, commonly used in the adsorption chillers. Bed–to–wall heat transfer coefficients for fixed and fluidized beds of adsorbent are determined. Sorbent particles diameters and velocities of fluidizing gas are discussed in the study. The calculations confirmed, that the bed–to–wall heat transfer coefficient in the fluidized bed of adsorbent is muchhigher than that in a conventional bed.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Guohu Luo ◽  
Zhenqiang Yao

Abstract This study investigates the mean flow and radial heat-transfer behaviors in semiclosed rotating disk cavity within the canned reactor coolant pump. The flow in the semiclosed cavity contains the Stewartson type flow at inner region and the Batchelor type flow at outer region. The heat is radially transported from the outer rim of the semiclosed disk cavity to discharge-hole through the nondirect discharge (ND) portion of the superimposed flow from inlet. The effects of rotating Reynolds numbers, cavity aspect ratio and radial location of discharge-hole on the discharge ratio, pumping mass flow rate, local wall shear stress and radial heat-transfer coefficient are examined in the semiclosed rotating cavity flow, respectively. Based on the radial heat transfer behaviors of pumping secondary flow, an equivalent thermal network is proposed and validated by experiments, which can effectively predict the radial temperature distribution from the discharge hole to periphery with the viscous-heating and nonisothermal effects.


Sign in / Sign up

Export Citation Format

Share Document