Methylene excitation energies, transition probabilities, and frequency dependent polarizabilities

1981 ◽  
Vol 84 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Jeffrey A. Nichols ◽  
Danny L. Yeager
Author(s):  
M.A. Mardyban ◽  
D.A. Sazonov ◽  
E.A. Kolganova ◽  
R.V. Jolos

The observed properties of the low-lying collective excitations of 96Zr and 96Mo are investigated in the framework of the collective quadrupole nuclear model with the Bohr Hamiltonian, whose potential energy has two minima – spherical and deformed. Satisfactory description of the excitation energies and E2 transition probabilities is obtained. It is shown that in the case of 96Zr both minima are sufficiently deep. However, in the case of 96Mo a deformed minimum is only outlined.


1995 ◽  
Vol 39 ◽  
pp. 845-855
Author(s):  
Krassimir N. Stoev ◽  
Joseph F. Dlouhy

K, L and M shell x-ray fluorescence cross sections have been measured for elements 11 ≤, Z ≤, 92 at excitation energies corresponding to weighted average energies of K-lines of Ti-K (4.558 keV), Fe-K (6,480 keV), Ge-K (10.024 keV), Se-K (11.391 keV) and Mo-K (17.805 keV) . The measurements were performed with an energy-dispersive x-ray spectrometer in a vacuum chamber using thin ultra-pure targets. Rh x-ray tube and secondary targets were used for excitation of x-ray radiation. The measured x-ray fluorescence cross-sections have been compared to previously published experimental and theoretical results. Presented data can be used for determination of physical parameters such as photoionization cross-sections, fluorescence yields, x-ray emission rates, Coster-Kronig transition probabilities and jump ratios.


Author(s):  
Mayank Dimri ◽  
Dishu Dawra ◽  
A.K. Singh ◽  
Alok K.S. Jha ◽  
Rakesh Kumar Pandey ◽  
...  

The influence of plasma screening on the excitation energies and transition properties of He-like Ni<sup>26+</sup> ion under strongly coupled plasma background has been analyzed. To perform the analysis, the multiconfiguration Dirac-Fock method has been adopted by incorporating the ion sphere model potential as a modified interaction potential between the electron and the nucleus. For comparison purposes, parallel calculations have been carried out using the modified relativistic configuration interaction method. It is found that the plasma energy shifts corresponding to principal quantum number conserving transitions (Δ n = 0) are blue shifted, whereas red shifted for the transitions where the principal quantum number is not conserved (Δn ≠ 0). The variation of transition probabilities and weighted oscillator strengths with free electron densities has also been studied. The present results should be advantageous in the modeling and diagnostics of astrophysical and laboratory plasmas.


Sign in / Sign up

Export Citation Format

Share Document