scholarly journals Higher dimensional lattice paths with diagonal steps

1976 ◽  
Vol 15 (2) ◽  
pp. 137-140 ◽  
Author(s):  
B.R. Handa ◽  
S.G. Mohanty
2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Lucas Gerin

International audience We build and analyze in this paper Markov chains for the random sampling of some one-dimensional lattice paths with constraints, for various constraints. These chains are easy to implement, and sample an "almost" uniform path of length $n$ in $n^{3+\epsilon}$ steps. This bound makes use of a certain $\textit{contraction property}$ of the Markov chain, and is proved with an approach inspired by optimal transport.


2021 ◽  
Vol 71 (6) ◽  
pp. 1459-1470
Author(s):  
Kun Li ◽  
Yanli He

Abstract In this paper, we are concerned with the existence of traveling wave solutions in nonlocal delayed higher-dimensional lattice systems with quasi-monotone nonlinearities. By using the upper and lower solution method and Schauder’s fixed point theorem, we establish the existence of traveling wave solutions. To illustrate our results, the existence of traveling wave solutions for a nonlocal delayed higher-dimensional lattice cooperative system with two species are considered.


1996 ◽  
Vol 11 (21) ◽  
pp. 3885-3933 ◽  
Author(s):  
SANJAYE RAMGOOLAM

We give a simple diagrammatic algorithm for writing the chiral large N expansion of intersecting Wilson loops in 2D SU(N) and U(N) Yang-Mills theory in terms of symmetric groups, generalizing the result of Gross and Taylor for partition functions. We prove that these expansions compute Euler characters of a space of branched covering maps from string worldsheets with boundaries. We prove that the Migdal-Makeenko equations hold for the chiral theory and show that they can be expressed as linear constraints on perturbations of the chiral YM 2 partition functions. We briefly discuss finite N, the nonchiral expansion, and higher-dimensional lattice models.


10.37236/1807 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert A. Sulanke

Let ${\cal C}(d,n)$ denote the set of $d$-dimensional lattice paths using the steps $X_1 := (1, 0, \ldots, 0),$ $ X_2 := (0, 1, \ldots, 0),$ $\ldots,$ $ X_d := (0,0, \ldots,1)$, running from $(0,\ldots,0)$ to $(n,\ldots,n)$, and lying in $\{(x_1,x_2, \ldots, x_d) : 0 \le x_1 \le x_2 \le \ldots \le x_d \}$. On any path $P:=p_1p_2 \ldots p_{dn} \in {\cal C}(d,n)$, define the statistics ${\rm asc}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j < \ell \}|$ and ${\rm des}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j>\ell \}|$. Define the generalized Narayana number $N(d,n,k)$ to count the paths in ${\cal C}(d,n)$ with ${\rm asc}(P)=k$. We consider the derivation of a formula for $N(d,n,k)$, implicit in MacMahon's work. We examine other statistics for $N(d,n,k)$ and show that the statistics ${\rm asc}$ and ${\rm des}-d+1$ are equidistributed. We use Wegschaider's algorithm, extending Sister Celine's (Wilf-Zeilberger) method to multiple summation, to obtain recurrences for $N(3,n,k)$. We introduce the generalized large Schröder numbers $(2^{d-1}\sum_k N(d,n,k)2^k)_{n\ge1}$ to count constrained paths using step sets which include diagonal steps.


Sign in / Sign up

Export Citation Format

Share Document