Granites and early Proterozoic crustal evolution in Sweden: evidence from SmNd, UPb and O isotope systematics

1985 ◽  
Vol 72 (4) ◽  
pp. 376-388 ◽  
Author(s):  
M.R. Wilson ◽  
P.J. Hamilton ◽  
A.E. Fallick ◽  
M. Aftalion ◽  
A. Michard
1989 ◽  
Vol 146 ◽  
pp. 48-53
Author(s):  
A.P Nutman ◽  
C.R.L Friend

The Ammassalik area of East Greenland lies in the centre of a 300 km wide early Proterozoic mobile belt, dominated by Archaean gneisses and early Proterozoic metasediments. Regional Proterozoic synkinematic metamorphism was associated with crustal thickening by southerly-directed thrusting and isoclinal folding. Maximum P, T conditions recorded during the regional metamorphism are found in the northern half of the mobile belt and are 9.5 kbar (equivalent to 30 km burial) and c. 700°C. Following some erosion and uplift, the late kinematic 1885 Ma Ammassalik Intrusive Complex (AIC) was intruded at pressures of c. 7 kbar (equivalent to a depth of 20 km). Temperatures in the metamorphic aureole of the AIC reached 800°C. Following further erosion and uplift, post kinematic, c. 1575 Ma granite-diorite-gabbro complexes were intruded, under pressures of 2.5 kbar (equivalent to a depth of 8 km).


2021 ◽  
pp. 195-197
Author(s):  
Shao-Yong Jiang ◽  
Martin R. Palmer ◽  
Yan-He Li ◽  
Chun-Ji Xue

2006 ◽  
Vol 144 (2) ◽  
pp. 361-378 ◽  
Author(s):  
PARAMPREET KAUR ◽  
NAVEEN CHAUDHRI ◽  
INGRID RACZEK ◽  
ALFRED KRÖNER ◽  
ALBRECHT W. HOFMANN

Determination of zircon ages as well as geochemical and Sm–Nd isotope systematics of granitoids in the Khetri Copper Belt of the Aravalli mountains, NW India, constrain the late Palaeoproterozoic crustal evolution of the Aravalli craton. The plutons are typical A-type within-plate granites, derived from melts generated in an extensional tectonic environment. They display REE and multi-element patterns characterized by steep LREE-enriched and almost flat HREE profiles and distinct negative anomalies for Sr, P and Ti. Initial εNd values range from −1.3 to −6.2 and correspond to crustal sources with mean crustal residence ages of 2.5 to 2.1 Ga. A lower mafic crustal anatectic origin is envisaged for these granitoids, and the heterogeneous εNd(t) values are inferred to have been acquired from the magma source region. Zircon Pb–Pb evaporation and U–Pb ages indicate widespread rift-related A-type magmatism at 1711–1660 Ma in the northern Delhi belt and also suggest a discrete older magmatic event at around 1800 Ma. The emplacement ages of the compositionally distinct A-type granitoid plutons, and virtually coeval granulite metamorphism and exhumation in another segment of the Aravalli mountains, further signify that part of the Aravalli crust evolved during a widespread extensional event in late Palaeoproterozoic time.


2021 ◽  
Vol 9 ◽  
Author(s):  
D. O. Zakharov ◽  
R. Tanaka ◽  
D. A. Butterfield ◽  
E. Nakamura

The δ18O values of submarine vent fluids are controlled by seawater-basalt exchange reactions, temperature of exchange, and to a lesser extent, by phase separation. These variations are translated into the δ18O values of submarine hydrothermal fluids between ca. 0 and + 4‰, a range defined by pristine seawater and equilibrium with basalt. Triple oxygen isotope systematics of submarine fluids remains underexplored. Knowing how δ17O and δ18O change simultaneously during seawater-basalt reaction has a potential to improve i) our understanding of sub-seafloor processes and ii) the rock-based reconstructions of ancient seawater. In this paper, we introduce the first combined δ17O-δ18O-87Sr/86Sr dataset measured in fluids collected from several high-temperature smoker- and anhydrite-type vent sites at the Axial Seamount volcano in the eastern Pacific Ocean. This dataset is supplemented by measurements of major, trace element concentrations and pH indicating that the fluids have reacted extensively with basalt. The salinities of these fluids range between 30 and 110% of seawater indicating that phase separation is an important process, potentially affecting their δ18O. The 87Sr/86Sr endmember values range between 0.7033 and 0.7039. The zero-Mg endmember δ18O values span from -0.9 to + 0.8‰, accompanied by the Δ′17O0.528 values ranging from around 0 to −0.04‰. However, the trajectory at individual site varies. The endmember values of fluids from focused vents exhibit moderate isotope shifts in δ′18O up to +0.8‰, and the shifts in Δ′17O are small, about −0.01‰. The diffuse anhydrite-type vent sites produce fluids that are significantly more scattered in δ′18O—Δ′17O space and cannot be explained by simple isothermal seawater-basalt reactions. To explain the observed variations and to provide constraints on more evolved fluids, we compute triple O isotope compositions of fluids using equilibrium calculations of seawater-basalt reaction, including a non-isothermal reaction that exemplifies complex alteration of oceanic crust. Using a Monte-Carlo simulation of the dual-porosity model, we show a range of possible simultaneous triple O and Sr isotope shifts experienced by seawater upon reaction with basalt. We show the possible variability of fluid values, and the causal effects that would normally be undetected with conventional δ18O measurements.


2020 ◽  
Vol 88 ◽  
pp. 268-295 ◽  
Author(s):  
Renato de Assis Barros ◽  
Fabrício de Andrade Caxito ◽  
Marcos Egydio-Silva ◽  
Elton Luiz Dantas ◽  
Marco Aurelio Piacentini Pinheiro ◽  
...  

Lithos ◽  
2020 ◽  
Vol 368-369 ◽  
pp. 105600
Author(s):  
Adrien Vezinet ◽  
D. Graham Pearson ◽  
Larry M. Heaman ◽  
Chiranjeeb Sarkar ◽  
Richard A. Stern

2009 ◽  
Vol 160 (2) ◽  
pp. 181-201 ◽  
Author(s):  
Y. Be’eri-Shlevin ◽  
Y. Katzir ◽  
J. Blichert-Toft ◽  
I. C. Kleinhanns ◽  
M. J. Whitehouse

Sign in / Sign up

Export Citation Format

Share Document