regional metamorphism
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 99)

H-INDEX

59
(FIVE YEARS 3)

2021 ◽  
Vol 33 (6) ◽  
pp. 659-673
Author(s):  
Fernando Cámara ◽  
Dan Holtstam ◽  
Nils Jansson ◽  
Erik Jonsson ◽  
Andreas Karlsson ◽  
...  

Abstract. Zinkgruvanite, ideally Ba4Mn42+Fe23+(Si2O7)2(SO4)2O2(OH)2, is a new member of the ericssonite group, found in Ba-rich drill core samples from a sphalerite- and galena- and diopside-rich metatuffite succession from the Zinkgruvan mine, Örebro County, Sweden. Zinkgruvanite is associated with massive baryte, barytocalcite, diopside and minor witherite, cerchiaraite-Al, and sulfide minerals. It occurs as subhedral to euhedral flattened and elongated crystals up to 4 mm. It is almost black and semi-opaque with a dark-brown streak. The lustre is vitreous to sub-adamantine on crystal faces and resinous on fractures. The mineral is brittle with an uneven fracture. VHN100=539, and HMohs ≈ 4.5. In thin fragments, it is reddish-black, translucent and optically biaxial (+), 2Vz > 70∘. Pleochroism is strong and deep brown-red (E ⊥ {001} cleavage) to olive-pale-brown. Chemical point analyses by WDS-EPMA (wavelength-dispersive X-ray spectroscopy electron probe microanalyser) together with iron valencies determined from Mössbauer spectroscopy yielded the empirical formula (based on 26 O+OH+F+Cl anions): (Ba4.02Na0.03)Σ4.05(Mn1.79Fe1.562+Fe0.423+Mg0.14Ca0.10Ni0.01Zn0.01)Σ4.03(Fe1.743+Ti0.20Al0.06)Σ2.00Si4(S1.61Si0.32P0.07)Σ1.99O24(OH1.63Cl0.29F0.08)Σ2.00. The mineral is triclinic, in space group P1¯, with unit-cell parameters a=5.3982(1) Å, b=7.0237(1) Å, c=14.8108(4) Å, α= 98.256(2)∘, β= 93.379(2)∘, γ= 89.985(2)∘ and V= 554.75(2) Å3 for Z=1. The eight strongest X-ray powder diffraction lines are the following (d Å (I %; hkl)): 3.508 (70; 103), 2.980(70; 114‾), 2.814 (68; 12‾2), 2.777 (70; 121), 2.699 (714; 200), 2.680 (68; 201‾), 2.125 (100; 124, 204) and 2.107 (96; 2‾21). The crystal structure (R1=0.0379 for 3204 reflections) is an array of TS (titanium silicate) blocks alternating with intermediate blocks. The TS blocks consist of HOH sheets (H for heteropolyhedral and O for octahedral) parallel to (001). In the O sheet, the Mn2+-dominant MO(1,2,3) sites give ideally Mn42+ pfu (per formula unit). In the H sheet, the Fe3+-dominant MH sites and AP(1) sites give ideally Fe23+Ba2 pfu. In the intermediate block, SO4 oxyanions and 11 coordinated Ba atoms give ideally 2× SO4Ba pfu. Zinkgruvanite is related to ericssonite and ferroericssonite in having the same topology and type of linkage of layers in the TS block. Zinkgruvanite is also closely compositionally related to yoshimuraite, Ba4Mn4Ti2(Si2O7)2(PO4)2O2(OH)2, via the coupled heterovalent substitution 2 Ti4++ 2 (PO4)3-→2 Fe3++ 2 (SO4)2− but presents a different type of linkage. The new mineral probably formed during a late stage of regional metamorphism of a Ba-enriched, syngenetic protolith, involving locally generated oxidized fluids of high salinity.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 452
Author(s):  
Vasiliy Sukhorukov ◽  
Valeriya Volkova ◽  
Peter Nevolko ◽  
Pavel Kozlov

Metamorphic processes play a key role in forming orogenic gold deposits. In this paper, we present new evidence that host schists of the two largest gold deposits of the Yenisey ridge (Russia) Olympiada and Eldorado underwent a single stage of metamorphism in contrast to surrounding blocks. This metamorphism is of moderate thermal gradient and belongs to the Barrovian type, which is typical for the collisional event in the time range 800–850 Ma. The new Ar/Ar age data presented in this paper and the review of magmatic and metamorphic events and ore-forming processes indicate that the most productive stage (gold-sulfide-quartz) correlates well in time with the regional metamorphism of the Barrovian type. This indicates that metamorphic processes can have a crucial role in forming gold deposits of the Yenisey ridge. Carbonaceous material thermometry indicates a wide range of obtained temperatures around 90–150 °C around the mean temperature for each sample. The highest temperatures are close to the peak metamorphic temperatures estimated by garnet-biotite thermometry.


2021 ◽  
Vol 59 (6) ◽  
pp. 1801-1820
Author(s):  
Giorgio Garuti ◽  
Federica Zaccarini

ABSTRACT Naldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.


2021 ◽  
Vol 906 (1) ◽  
pp. 012024
Author(s):  
Kamal Haji Karim

Abstract Mawat Ophiolite Complex is located about 36 km to the northeast of Sulaimani city and directly to the east-northeast of Mawat town near the border of Iran in the northeastern Iraq. The complex has about 600-km2 surface area and consists of high mountain terrains that subjected to intense geological investigations from the fiftieth of previous century till now. According to previous studies, the complex contains tens of igneous rocks such as basalt, metabasalt, tuff, diabase, metadiabase, diorite dykes, periodotite, serpentinite, serpentinite-matrix mélange, gabbro, metagabbro, harzbergite, pyroxenite, plagiogranite, pegmatite, granitiod rocks and dunite. They added occurrences of the volcanic and subvolcanic rocks in the form of dykes or basaltic flows. The present study tries to change the petrology and tectonics of whole complex from Ophiolite Complex to Metamorphic Core Complex. The revision includes refusal of all the above igneous rocks, instead they considered as medium grade regional metamorphism of different types of volcaniclastic sandstones (volcanic wackes), arenites and greywackes (impure sandstones) which sourced predominantly from remote volcanic source area inside Iran. The revision depended on several conjugate field and laboratory evidences inside the complex. These evidences such as absence of pillow basalt, volcanic flows, glass shards, volcanic cones, dykes, sills, contact metamorphism, dilatational structures and flow structures. Other evidences are presence of cross beddings, erosional surfaces, lensoidal channel fills, metamorphosed conglomerate, exposures of thousands of laminated planar beds and transition from fresh volcaniclastic sandstones to its medium grade metamorphosed counterparts, which previously considered as igneous rocks of ophiolite types. Another, evidence, in contrast to ophiolite section, the basalt location is at the base of the claimed ophiolite section while plutonic (dunite and peridotite) rocks located at its top. These locations of the two rocks contradict the definition of ophiolites. Accordingly, the present study changed the geological map of the whole Mawat area from igneous outcrops to metamorphosed volcaniclastic sandstones, arenites and greywackes that belong to Walash-Naoperdan Series. The parent rocks of the series transformed to different types of regionally metamorphosed rocks by deep burial during Eocene. During the burial, diageneses and metamorphisms enhanced by complex mixture of materials from different source areas and seawaters environments. Later, they uplifted, unroofed and exhumed during Pliocene as a core complex.


Author(s):  
Nils F. Jansson ◽  
Rodney L. Allen ◽  
Göran Skogsmo ◽  
Thomas Turner

AbstractUnravelling the genesis of metamorphosed mineral deposits can be complicated due to difficulties in separating between primary features and features that formed during the metamorphic overprint. Such uncertainty exists for stratabound and dolomite- and skarn-hosted Zn-Pb-Ag sulfide deposits in 1.89 Ga rocks in the Bergslagen lithotectonic unit (BLU) of Sweden, where a metasomatic vs. regional metamorphic origin for skarns has long been discussed. By integrating geological mapping with new lithogeochemical, mineralogical, and stable isotope data (C, O, S), we show that complexly zoned garnet and clinopyroxene skarns in the Sala area of the central BLU predate mineralization. Sphalerite-galena mineralization formed after the deposition of a younger, more Mn-rich ferroan diopside and andradite-grossular garnet, and is associated with phlogopite, tremolite-actinolite, chlorite, serpentine, and calcite. Mineralization in conjunction with a transition from high-T metasomatism to hydrolytic alteration is inferred. An average δ34SV-CDT of 1.6 ± 1.9‰ in sulfides is consistent with a primordial sulfur source. Trends defined by negative shifts in δ18OV-SMOW and δ13CV-PDB in dolomite and calcite are consistent with fluid infiltration at 300–500 °C. The alteration system is sharply truncated by unaltered, c. 1.89 Ga calc-alkaline granite and porphyritic intrusions, which along with F1 folding of the alteration zones and mineralization suggest that mineralization predate regional metamorphism. The Sala deposits are interpreted as Zn skarn deposits formed in conjunction with the emplacement of intrusions into penecontemporaneous marine volcanic and dolomitized limestone strata. The unusually Mg-rich mineralogy in relation to Zn skarns worldwide most likely reflects the dolomitic precursor.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 976
Author(s):  
Aleksandra Kozłowska ◽  
Katarzyna Jarmołowicz-Szulc ◽  
Marta Kuberska ◽  
Krystyna Wołkowicz

The paper presents the latest state of knowledge on clastic sedimentary rocks from the Carboniferous complex in the SW part of the Polish Lowlands, studied to help determine their potential prospectivity for the occurrence of oil and/or gas deposits. Rocks were analyzed with respect to the petrographic-mineralogical characteristics of the Carboniferous deposits, their diagenesis, determinations of pressure-temperature conditions of mineral formation and the hydrocarbon occurrence. Analyses were carried out on samples from four selected boreholes in the Fore-Sudetic Monocline. After microscopic analysis of rocks and minerals in thin sections, the following techniques were used: luminescence analysis (UV, blue light), microthermometric analysis of fluid inclusions in double-sided polished wafers, XRD analyses, stable isotopic analyses (carbon, oxygen) on calcite and dolomite-ankerite and Raman spectra of fluid inclusions. Orthochemical components, such as carbonates and authigenic quartz, that form cements or fill the veins cutting the sample material have been studied. Fluid inclusion data in quartz and carbonates result in homogenization temperatures of 74–233 °C. The Raman analysis gives temperature estimations for the organic matter of about 164 °C and 197 °C, depending on the borehole, which points to a low coalification degree. The post-sedimentary processes of compaction, cementation and diagenetic dissolution under eo- and meso-diagenetic conditions to temperatures of over 160 °C influenced the present character of the deposits. P-T conditions of brines and methane trapping have been estimated to be ~850–920 bars and 185–210 °C (vein calcite) and ~1140 bars and 220 °C (Fe-dolomite/ankerite). However, locally, temperatures might have been higher (>200 °C), which may be a symptom of local regional metamorphism of a very low degree.


2021 ◽  
Vol 62 (9) ◽  
pp. 987-1005
Author(s):  
A.Yu. Selyatitskii ◽  
O.P. Polyansky ◽  
R.A. Shelepaev

Abstract —Thermal metamorphism produced an aureole near the early Paleozoic Bayan-Kol gabbro–monzodiorite intrusion in the Erzin shear zone of western Sangilen (Tuva–Mongolia microcontinent, Central Asian Orogenic Belt). Field observation of intrusive contact, structure–textural and mineral transformations of metamorphic rocks, regular changes in the chemical composition of minerals with approaching the intrusive contact, and high temperature gradient from intrusive to wallrocks verified the occurrence of a contact aureole near the Bayan-Kol intrusion. The high-gradient thermal metamorphism (M2) affected garnet–staurolite–kyanite schists that formed during earlier regional metamorphism (M1) at 6.2–7.9 kbar and 600–670 ºC. The 0.5 km wide M2 metamorphic aureole mapped along the northwestern intrusion margin consists of a muscovite–sillimanite zone adjacent to the sedimentary country rocks and a cordierite–K-feldspar zone on the side of the intrusion. The M2 metamorphic reactions occurred within the granulite facies temperature range 880–910 ºC along the contact with monzodiorites and at ~950 ºC along the boundary with gabbronorites; the temperature on the aureole periphery was about 640 ºC. Pressure estimates indicate deep-seated high-grade metamorphism at 6.9–7.8 kbar, while the intrusion itself crystallized at 7.7–7.8 kbar. The suggested numerical model implying the formation of a thermal aureole at a depth of 26 km (7 kbar) in the lower crust is consistent with the temperature pattern determined by geothermobarometry for several key points of the metamorphic zoning and confirms its deep-level origin. Thus, the aureole near the Bayan-Kol intrusion represents a rare case of contact metamorphism in the lower continental crust. The obtained results, along with published petrological and geochronological evidence, reveal two depth levels of the early Paleozoic M2 metamorphism in the Sangilen area: upper (7–15 km, 2–4 kbar) and lower (26–30 km, 7–8 kbar) crust. The Bayan-Kol gabbro–monzodiorite intrusion is likely a small apophysis or a fragment of a deep-crust intermediate magma chamber, while the moderate-pressure (7–8 kbar) M2 granulites in the Erzin shear zone are products of high-gradient metamorphism related to the Cambrian–Ordovician collisional mafic magmatism in the Sangilen area.


2021 ◽  
Author(s):  
Valentina Taranovic ◽  
Stephen J. Barnes ◽  
Steve Beresford ◽  
Morgan Williams ◽  
Colin MacRae ◽  
...  

Abstract The Nova-Bollinger Ni-Cu sulfide ore deposit is the first economic Ni-Cu-Co sulfide deposit to have been discovered in the Albany-Fraser orogen in Western Australia. The host rocks are mafic-ultramafic intrusive cumulates subdivided into two connected intrusions, designated Upper and Lower. The Upper Intrusion is bowl-shaped and modally layered with alternating peridotite and norite mesocumulate layers, with a Basal Series of dominantly orthocumulate mafic lithologies. The Lower Intrusion is a much thinner, semiconformable chonolith (flattened tube-shaped intrusion) consisting of mostly unlayered mafic to ultramafic orthocumulates. The Lower Intrusion hosts all the high-grade mineralization and most of the disseminated ores. A distinctive plagioclase-bearing lherzolite containing both orthopyroxene and olivine as cumulus phases is a characteristic of the Lower Intrusion and the Basal Series of the Upper. The intrusions differ slightly in olivine and spinel chemistry, the differences being largely attributable to the more orthocumulate character of the Lower Intrusion. Sector zoning in Cr content of pyroxenes is observed in the Lower Intrusion and in the lower marginal zone of the Upper and is attributed to crystallization under supercooled conditions. Symplectite pyroxene-spinel-amphibole coronas at olivine-plagioclase contacts are ubiquitous and are attributed to near-solidus peritectic reaction between olivine, plagioclase, and liquid during and after high-pressure emplacement, consistent with high Al contents in igneous pyroxenes and estimates of the peak regional metamorphism. Original cumulus olivines had compositions around Fo86 and were variably Ni depleted, interpreted as the result of preintrusion equilibration with sulfide liquid. The Upper and Lower Intrusion rocks represent cumulates from a similar parental magma, a high-Al tholeiite with MgO between 10 and 12%, low TiO2 (0.5–0.6%), and high Al2O3 (14–17%). Modeling using alphaMELTS indicates a primary water content of around 2 wt %. The cumulates of both intrusions were derived via multiple magma pulses of liquid-olivine-sulfide slurries with variable amounts of orthopyroxene, emplaced into the deep crust at pressures of around 0.7 GPa during the peak of regional metamorphism. The intrusions developed initially as a bifurcating sill, the lower arm developing into the ore-bearing Lower Intrusion chonolith and the upper arm inflating into the cyclically layered Upper Intrusion.


2021 ◽  
Vol 43 (3) ◽  
pp. 27-46
Author(s):  
V. V. Stogny ◽  
G. A. Stogny

Profile 3-DV (Skovorodino-Tommot) crosses in the sublatitudinal direction the Stanovoy and Aldan megablocks of the Aldan-Stanovoy shield. As the basic elements of the Earth’s crust section along the profile 3-DV, a technique was adopted for identifying regional inhomogeneities of the lithosphere based on the results of the analysis of seismic and gravimetric data with subsequent typification of their nature. According to the SRM-CMP data, in the upper part of the section (up to 35 km) of the Aldan megablock, the Yakokut and Chulman heterogeneities are distinguished, and the Stanovoy megablock — the Kalara-Dzhugdzhur heterogeneity. The Yakokut and Chulman seismic inhomogeneities in the gravitational field correspond to minima with an the amplitude of up to 25 mGal. The gravitational field of the Kalara-Dzhugdzhur heterogeneity is mosaic and reflects its block structure. It is shown that the deep structure of the Aldan megablock in the area of the 3-DV profile is determined by the Yakokut granite-gneiss dome and Chulman sublateral decompaction zone, and the upper part (0—25 km) of the Stanovoy megablock is represented by the Kalar-Dzhugdzhur structure, composed of the Stanovoy complex of rocks  and blocks of highpressure granulites. A significant (up to 10 km) increase in the thickness of the earth’s crust of the Aldan megablock is explained by the presence of the upper layer juvenile crust formed in the Paleoproterozoic as a result of regional metamorphism of igneous rocks. The Earth’s crust of the Stanovoy megablock is tectonically rebuilt for almost the entire thickness of up to 40 km during the Mesozoic collision of the Precambrian North Asian and Sino-Korean cratons. The Yakokut granite-gneiss dome, in accordance with the proposed model of the structure of the Earth’s crust of the Aldan megablock, is the ore-controlling structure of the Central Aldan gold-bearing region, and highpressure granulites of the Zverevsky block of the Kalara-Dzhugdzhur heterogeneity of the Stanovoy megablock served as a source of gold in the Chako-Berkakit ore cluster.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Kong ◽  
Xueyuan Qi ◽  
Wentian Mi ◽  
Xiaoxin Dong

We report zircon U–Pb ages and Lu-Hf isotopic data from two sample of the retrograded eclogite in the Chicheng area. Two groups of the metamorphic zircons from the Chicheng retrograded eclogite were identified: group one shows characteristics of depletion in LREE and flat in HREE curves and exhibit no significant Eu anomaly, and this may imply that they may form under eclogite facies metamorphic condition; group two is rich in HREE and shows slight negative Eu anomaly indicated that they may form under amphibolite facies metamorphic condition. Zircon Lu-Hf isotopic of εHf from the Chicheng eclogite has larger span range from 6.0 to 18.0, which suggests that the magma of the eclogite protolith may be mixed with partial crustal components. The peak eclogite facies metamorphism of Chicheng eclogite may occur at 348.5–344.2 Ma and its retrograde metamorphism of amphibolite fancies may occur at ca. 325.0 Ma. The Hongqiyingzi Complex may experience multistage metamorphic events mainly including Late Archean (2494–2448 Ma), Late Paleoproterozoic (1900–1734 Ma, peak age = 1824.6 Ma), and Phanerozoic (495–234 Ma, peak age = 323.7 Ma). Thus, the metamorphic event (348.5–325 Ma) of the Chicheng eclogite is in accordance with the Phanerozoic metamorphic event of the Hongqiyingzi Complex. The eclogite facies metamorphic age of the eclogite is in accordance with the metamorphism (granulite facies or amphibolite facies) of its surrounding rocks, which implied that the tectonic subduction and exhumation of the retrograded eclogite may cause the regional metamorphism of garnet biotite plagioclase gneiss.


Sign in / Sign up

Export Citation Format

Share Document